Deploying dense small cells is the key to providing high capacity, but raise the serious issue of energy consumption and inter-cell interference. To understand the behaviors of ultra-dense small cells (UDSC) with dynamic interference and traffic patterns, this paper presents a data-driven resource management (DDRM) framework to implement power control and channel rearrangement in UDSC. We find that the inter-cell interference can be used to describe the affinity of cells. Thus, we propose an unsupervised learning algorithm for UDSC, called affinity propagation power control (APPC) mechanism. In principle, APPC first groups small cells into different clusters and identifies cluster centers. Next, the transmission power of a cluster center is decreased to reduce the interference to the neighboring cells' users in this cluster. Since lowering transmission power of a cluster center cell may cause the performance degradation to the users at the cell edge, a victim-aware channel rearrangement (VACR) mechanism is further designed to adjust the channel usage bandwidth of the neighboring cells in order to guarantee the quality of service of these victimized users. Our simulation results show that the DDRM framework can significantly improve energy efficiency and throughput in UDSC compared to the existing approaches.
Drone small cells (DSCs) can provide on-demand air-to-ground wireless communications in various unexpected situations, such as traffic jam or natural disasters. However, a DSC needs to face the challenges such as severe co-channel interference, limited battery capacity, and fast topology changes. Aiming to improve energy efficiency of DSCs and quality of services of customers, this paper presents a learning-based multiple drone management (LDM) framework by controlling the transmission power and the 3-dimension location of DSCs based on location data, and reference signal received power of users. Since the labeled throughput data are typically not available in emergency situations, we develop unsupervised learning DSC management techniques: 1) affinity propagation interference management scheme to mitigate interference and energy consumption, and 2) K-means position adjustment to adjust the new 3-dimension positions of drones. Our numerical results show that the proposed LDM framework combining with affinity propagation clustering and k-means clustering can enhance the energy efficiency of DSCs by 25% and the signal-to-interference-plus-noise ratio of ground users by 56%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.