Guided by the theoretical calculation, achieving an efficient hydrogen evolution reaction (HER) by S-vacancy engineering toward MoS2-based materials is quite challenging due to the contradictory relationship between the adsorption free energy of hydrogen atoms (ΔG H) of the exposed Mo atoms (EMAs) and the number of EMAs per unit area (N EMAs). Herein, we demonstrate a novel one-pot incorporating-assisted compositing strategy to realize fine-tuning the concentration of S-vacancies (C S‑vacancies) of MoS2-based materials to boost highly active EMAs for efficient HER. In our strategy, S-vacancies are modulated into basal planes of MoS2 via decreasing the formation energy of S-vacancies by oxygen incorporation; moreover, C S‑vacancies of the basal planes is precisely regulated by simply controlling the molar amount of the Co precursor based on the electron injection effect. At low or excessively high C S‑vacancies, the as-synthesized electrocatalysts lack “highly active EMAs” in quantity or nature. The balance between the intrinsic activity of EMAs and N EMAs is realized for boosting EMAs with high catalytic performance. The optimal electrocatalysts exhibit excellent activity and stability at fine-tuning C S‑vacancies to 9.61%. Our results will pave a novel strategy for unlocking the potential of an inert basal plane in MoS2 for high-performance HER.
Low or excessively high concentration of S-vacancy (CS-vacancy) is disadvantageous for the hydrogen evolution reaction (HER) activity of MoS2-based materials. Additionally, alkaline water electrolysis is most likely to be utilized in the industry. Consequently, it is of great importance for fine-tuning CS-vacancy to significantly improve alkaline hydrogen evolution. Herein, we have developed a one-step Ru doping coupled to compositing with CoS2 strategy to precisely regulate CS-vacancy of MoS2-based materials for highly efficient HER. In our strategy, Ru doping favors the heterogeneous nucleation and growth of CoS2, which leads to a high crystallinity of Ru-doped CoS2 (Ru-CoS2) and rich heterogeneous interfaces between Ru-CoS2 and Ru-doped MoS2-x (Ru-MoS2-x). This facilitates the electron transfer from Ru-CoS2 to Ru-MoS2-x, thereby increasing CS-vacancy of MoS2-based materials. Additionally, the electron injection effect increases gradually with an increase in the mass of Co precursor (mCo), which implies more S2- leaching from MoS2 at higher mCo. Subsequently, CS-vacancy of the as-synthesized samples is precisely regulated by the synergistic engineering of Ru doping and compositing with CoS2. At CS-vacancy = 17.1%, a balance between the intrinsic activity and the number of exposed Mo atoms (EMAs) to boost highly active EMAs should be realized. Therefore, the typical samples demonstrate excellent alkaline HER activity, such as a low overpotential of 170 mV at 100 mA cm−2 and a TOF of 4.29 s−1 at -0.2 V. Our results show promise for important applications in the fields of electrocatalysis or energy conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.