A 2D, extremely stable, metal-organic framework (MOF), NENU-503, was successfully constructed. It displays highly selective and recyclable properties in detection of nitroaromatic explosives as a fluorescent sensor. This is the first MOF that can distinguish between nitroaromatic molecules with different numbers of NO2 groups.
A stable porous carbazole-based luminescent metal-organic framework, NENU-522, was successfully constructed. It is extremely stable in air and acidic/basic aqueous solutions, which provides the strategy for luminescent material encapsulation of Ln(3+) ions with tunable luminescence for application in light emission. More importantly, Ln(3+)@NENU-522 can emit white light by encapsulating different molar ratios of Eu(3+) and Tb(3+) ions. Additionally, Tb(3+)@NENU-522 is found to be useful as a fluorescent indicator for the qualitative and quantitative detection of nitroaromatic explosives with different numbers of -NO2 groups, and the concentrations of complete quenching are about 2000, 1000, and 80 ppm for nitrobenzene, 1,3-dinitrobenzene, and 2,4,6-trinitrophenol, respectively. Meanwhile, Tb(3+)@NENU-522 displays high selectivity and recyclability in the detection of nitroaromatic explosives.
Herein, a novel anionic framework with primitive centered cubic (pcu) topology, [(CH3 )2 NH2 ]4 [(Zn4 dttz6 )Zn3 ]⋅15 DMF⋅4.5 H2 O, (IFMC-2; H3 dttz=4,5-di(1H-tetrazol-5-yl)-2H-1,2,3-triazole) was solvothermally isolated. A new example of a tetranuclear zinc cluster {Zn4 dttz6 } served as a secondary building unit in IFMC-2. Furthermore, the metal cluster was connected by Zn(II) ions to give rise to a 3D open microporous structure. The lanthanide(III)-loaded metal-organic framework (MOF) materials Ln(3+) @IFMC-2, were successfully prepared by using ion-exchange experiments owing to the anionic framework of IFMC-2. Moreover, the emission spectra of the as-prepared Ln(3+) @IFMC-2 were investigated, and the results suggested that IFMC-2 could be utilized as a potential luminescent probe toward different Ln(3+) ions. Additionally, the absorption ability of IFMC-2 toward ionic dyes was also performed. Cationic dyes can be absorbed, but not neutral and anionic dyes, thus indicating that IFMC-2 exhibits selective absorption toward cationic dyes. Furthermore, the cationic dyes can be gradually released in the presence of NaCl.
Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. biphenyl-4-carboxylic acid), with uncoordinated N atoms on its internal surface was solvothermally synthesized and structurally characterized. This metal-organic framework (MOF) exhibited high CO 2 uptake of 79.9 cm 3 cm À3 at 298 K and 100 kPa, as well as excellent adsorption selectivity for CO 2 over CH 4 and N 2 . Particularly, its exceptionally high selectivity of CO 2 over N 2 at 298 K has ranked NENU-520 among the highest MOFs for selective CO 2 separation. Furthermore, the potential application of NENU-520 for the fixed bed pressure swing adsorption (PSA) separation of CO 2 from CH 4 and N 2 has been validated via simulated breakthrough experiments. The small channel with the size of 3.6Å, combined with CO 2 -accessible free nitrogen atoms directed toward the inner surface, is believed to contribute to its high CO 2 uptake capacity and selectivity. Thus, this work represents a unique way to target MOF materials for highly selective CO 2 separation by incorporating CO 2 -philic functional sites on pore surfaces, and at the same time optimizing pore sizes.
A hexagonal channel-based porous anionic metal-organic framework was successfully constructed. IFMC-3 is stable in air and acidic/basic aqueous solutions at room temperature, and constitutes a selective luminescent sensing material for Ln(3+) ions and a recyclable probe for the sensitive detection of nitrobenzene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.