This paper proposes a kernel-blending connection approximated by a neural network (KBNN) for image classification. A kernel mapping connection structure, guaranteed by the function approximation theorem, is devised to blend feature extraction and feature classification through neural network learning. First, a feature extractor learns features from the raw images. Next, an automatically constructed kernel mapping connection maps the feature vectors into a feature space. Finally, a linear classifier is used as an output layer of the neural network to provide classification results. Furthermore, a novel loss function involving a cross-entropy loss and a hinge loss is proposed to improve the generalizability of the neural network. Experimental results on three well-known image datasets illustrate that the proposed method has good classification accuracy and generalizability.
Generally, most existing super-resolution (SR) methods do not consider noise, which treats SR reconstruction and denoising as two separate problems and performs separately. However, noise is inevitably introduced in the imaging process. Based on analysis of the degraded model, in this paper, the problems of interpolation and denoising are modeled to estimate the noiseless and missing images under the same framework. By applying local fractal dimension (LFD) into image local feature analysis, a noisy singleimage SR method is proposed. For each noisy image, we first construct a rational fractal interpolation model containing scaling factors, which can effectively maintain the inherent properties of the data. Furthermore, the original image structure can be well preserved by applying the interpolation model. Considering the local characteristics of the image, scaling factors are calculated on the basis of the LFDs. Then, through further local feature analysis of the interpolated image, a denoising method based on LFD is proposed for recovering a noiseless image. Finally, a high-quality high-resolution image is obtained. Experimental results demonstrate that our method outperforms the state-of-the-art methods both quantitatively and qualitatively.INDEX TERMS Noisy image super-resolution, local fractal dimension, local fractal feature analysis, scaling factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.