We present a framework for fast synthesizing indoor scenes, given a room geometry and a list of objects with learnt priors. Unlike existing data-driven solutions, which often learn priors by co-occurrence analysis and statistical model fitting, our method measures the strengths of spatial relations by tests for complete spatial randomness (CSR), and learns discrete priors based on samples with the ability to accurately represent exact layout patterns. With the learnt priors, our method achieves both acceleration and plausibility by partitioning the input objects into disjoint groups, followed by layout optimization using position-based dynamics (PBD) based on the Hausdorff metric. Experiments show that our framework is capable of measuring more reasonable relations among objects and simultaneously generating varied arrangements in seconds compared with the state-of-the-art works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.