Spatiotemporal information is essential for video salient object detection (VSOD) due to the highly attractive object motion for human's attention. Previous VSOD methods usually use Long Short-Term Memory (LSTM) or 3D ConvNet (C3D), which can only encode motion information through step-by-step propagation in the temporal domain. Recently, the non-local mechanism is proposed to capture long-range dependencies directly. However, it is not straightforward to apply the non-local mechanism into VSOD, because i) it fails to capture motion cues and tends to learn motion-independent global contexts; ii) its computation and memory costs are prohibitive for video dense prediction tasks such as VSOD. To address the above problems, we design a Constrained Self-Attention (CSA) operation to capture motion cues, based on the prior that objects always move in a continuous trajectory. We group a set of CSA operations in Pyramid structures (PCSA) to capture objects at various scales and speeds. Extensive experimental results demonstrate that our method outperforms previous state-of-the-art methods in both accuracy and speed (110 FPS on a single Titan Xp) on five challenge datasets. Our code is available at https://github.com/guyuchao/PyramidCSA.
Humans have the ability to perceive kinetic depth effects, i.e., to perceived 3D shapes from 2D projections of rotating 3D objects. This process is based on a variety of visual cues such as lighting and shading effects. However, when such cues are weak or missing, perception can become faulty, as demonstrated by the famous silhouette illusion example of the spinning dancer. Inspired by this, we establish objective and subjective evaluation models of rotated 3D objects by taking their projected 2D images as input. We investigate five different cues: ambient luminance, shading, rotation speed, perspective, and color difference between the objects and background. In the objective evaluation model, we first apply 3D reconstruction algorithms to obtain an objective reconstruction quality metric, and then use quadratic stepwise regression analysis to determine weights of depth cues to represent the reconstruction quality. In the subjective evaluation model, we use a comprehensive user study to reveal correlations with reaction time and accuracy, rotation speed, and perspective. The two evaluation models are generally consistent, and potentially of benefit to inter-disciplinary research into visual perception and 3D reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.