In this paper, we present a projection pursuit (PP) approach to target detection. Unlike most of developed target detection algorithms that require statistical models such as linear mixture, the proposed PP is to project a high dimensional data set into a low dimensional data space while retaining desired information of interest. It utilizes a projection index to explore projections of interestingness. For target detection applications in hyperspectral imagery, an interesting structure of an image scene is the one caused by man-made targets in a large unknown background. Such targets can be viewed as anomalies in an image scene due to the fact that their size is relatively small compared to their background surroundings. As a result, detecting small targets in an unknown image scene is reduced to finding the outliers of background distributions. It is known that "skewness," is defined by normalized third moment of the sample distribution, measures the asymmetry of the distribution and "kurtosis" is defined by normalized fourth moment of the sample distribution measures the flatness of the distribution. They both are susceptible to outliers. So, using skewness and kurtosis as a base to design a projection index may be effective for target detection. In order to find an optimal projection index, an evolutionary algorithm is also developed to avoid trapping local optima. The hyperspectral image experiments show that the proposed PP method provides an effective means for target detection.Index Terms-Evolutional algorithm, hyperspectral imagery, kurtosis, projection index, projection pursuit (PP), skewness, target detection.
Anomaly detection becomes increasingly important in hyperspectral image analysis, since hyperspectral imagers can now uncover many material substances which were previously unresolved by multispectral sensors. Two types of anomaly detection are of interest and considered in this paper. One was previously developed by Reed and Yu to detect targets whose signatures are distinct from their surroundings. Another was designed to detect targets with low probabilities in an unknown image scene. Interestingly, they both operate the same form as does a matched filter. Moreover, they can be implemented in real-time processing, provided that the sample covariance matrix is replaced by the sample correlation matrix. One disadvantage of an anomaly detector is the lack of ability to discriminate the detected targets from another. In order to resolve this problem, the concept of target discrimination measures is introduced to cluster different types of anomalies into separate target classes. By using these class means as target information, the detected anomalies can be further classified. With inclusion of target discrimination in anomaly detection, anomaly classification can be implemented in a three-stage process, first by anomaly detection to find potential targets, followed by target discrimination to cluster the detected anomalies into separate target classes, and concluded by a classifier to achieve target classification. Experiments show that anomaly classification performs very differently from anomaly detection.
This article sets out to investigate price clustering in both the open-outcry (floor-traded) and electronically traded (E-mini) index futures markets of the DJIA, S&P 500, and NASDAQ-100 indices. The results show that although price clustering is ubiquitous in both the floor-traded and E-mini index futures markets, it nevertheless tends to be higher for open-outcry index futures, with the clustering in floor-traded NASDAQ-100 index futures demonstrating the highest level (97%) at zero digits. A significant increase was also found in price clustering in floor-traded index futures after the introduction of E-mini futures trading. The results tend to suggest that those trading mechanisms that involve higher levels of human participation, such as the open-outcry markets, may well lead to increased incidences of price clustering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.