Abstract. We have examined the cell-specific expression of two fibronectin isoforms, EIIIA and EIHB, during experimental hepatic fibrosis induced by ligation of the biliary duct. At the mRNA level, EIIIA and EIIIB were undetectable in normal liver but expressed early in injury, preceding fibrosis. The cellular sources of these changes were determined by fractionating the liver at various time points after bile duct ligation into its constituent cell populations and extracting RNA from the fresh isolates. EIllA-containing fibronectin mRNA was undetectable in normal sinusoidal endothelial cells but increased rapidly within 12 h of injury. By contrast, the EIIIB form was restricted to hepatic lipocytes (Ito or fat-storing cells) and appeared only after a lag of 12-24 h: it was minimal in sinusoidal endothelial cells. Both forms were minimal in hepatocytes. At the protein level, EIIIA-containing fibronectin was markedly increased within two days of injury and exhibited a sinusoidal distribution. Secretion of this form by endothelial cells was confirmed in primary culture. Matrices deposited in situ by endothelial cells from injured liver accelerated the conversion ("activation") of normal lipocytes to myofibroblast-like cells, and pretreatment of matrices with monoclonal antibody to the EIIIA segment blocked this response. Finally, recombinant fibronectin peptide containing the EIIIA segment was stimulatory to lipocytes in culture. We conclude that expression of EIIIA fibronectin by sinusoidal endothelial cells is a critical early event in the liver's response to injury and that the EIIIA segment is biologically active, mediating the conversion of lipocytes to myofibroblasts.
Expression of the group of cytokines known as transforming growth factor-,f (TGF-pl, -.82 and -p3) is increased during liver regeneration induced by a 70% partial hepatectomy. The origin of these changes was examined in purified isolates of hepatocytes, sinusoidal endothelial cells, Kupffer cells (liver macrophages), and lipocytes (Ito or stellate cells) from normal and regenerating liver. In normal liver, TGF-131 and -132 levels were relatively high in sinusoidal endothelial cells and Kupffer cells. After partial hepatectomy, an early peak of TGF-182 and -,B3 was present in all four cell types, followed by a sustained increase in mRNA for TGF-131, -132, and -133 primarily in the hepatocyte population. The specificity of these changes was established by examining a mechanistically different injury model, fibrosis induced by ligation of the biliary duct. In this model, TGF13 mRNA was increased only in lipocytes and the increase was progressive over a 7-d period of observation. Secretion of TGF13 protein was examined in cell isolates placed in short-term primary culture and generally reflected the corresponding mRNA level. The TGFP released by hepatocytes was entirely in the latent form, whereas the individual nonparenchymal cell isolates released 50-90% active TGF13. Hepatocyte-conditioned culture medium, after treatment to activate latent TGFP, inhibited hepatocellular DNA synthesis as did the authentic factor. The data indicate that after injury TGFI3 increases selectively in the cells that are the target of the factor, i.e., in hepatocytes after partial hepatectomy and in lipocytes in inflammation and fibrosis. We conclude that the effects of TGFP in liver regeneration and fibrogenesis are predominantly, if not exclusively, autocrine. (J. Clin. Invest. 1995. 96:447-455.)
A prominent feature of the hepatic response to injury is production of a fetal isoform of fibronectin, a splice variant containing the EIIIA region, which appears very early after injury and derives from sinusoidal endothelial cells. Previous studies have shown that it is instrumental in initiating the cellular response to injury, specifically the conversion of resting stellate cells to myofibroblast-like cells. The present work describes the regulation of this change in fibronectin expression. Using sinusoidal endothelial cells from normal or injured liver in primary culture, we show that exogenous transforming growth factor beta (TGFbeta) stimulates [EIIIA]Fn expression. To assess the role of TGFbeta in vivo, we used a chimeric IgG containing the extracellular portion of the TGFbeta type II receptor as a competitive inhibitor of the cytokine. Administered to animals at the time of injury, the inhibitor reduced expression of [EIIIA]Fn mRNA by 50% as compared to controls (P < 0.01). There was a corresponding decrease in [EIIIA]Fn protein production as judged by immunohistochemistry. Cell fractionation experiments indicated that the changes observed in whole-liver extracts were localized to sinusoidal endothelial cells. We conclude that TGFbeta initiates wound repair in part by stimulating endothelial expression of [EIIIA]Fn. Results with the soluble inhibitor of the TGFbeta type II receptor suggest a novel strategy for modulating wound repair in vivo.
We describe transfection of DNA into parenchymal and individual non-parenchymal cell populations from adult rat liver in early primary culture, using cationic lipid as the carrier. All cell populations were transfectable, although lipid requirements varied by cell type and, for hepatocytes, with the age of the culture. For hepatocytes in early primary culture (2-10 hours after plating), pure DOTMA (N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride) was strikingly more effective than commercial formulations (Lipofectin or TransfectACE) containing components in addition to, or other than DOTMA. For hepatocytes fully adapted to culture (approximately 48 hours after plating), pure DOTMA and Lipofectin were similarly effective. Under optimal conditions, about 10% of hepatocytes expressed the transfected reporter gene. CAT expression in hepatocytes doubled from 48 hours to 7 days after transfection. The effect of culture substratum on transfection efficiency also was examined. The presence of basement membrane-like matrix (EHS gel) reduced uptake of the DNA-lipid complex. However, cells in early culture that were transfected on collagen and then replated on EHS gel, displayed significantly greater reporter gene activity than did cells maintained throughout on collagen. In contrast to hepatocytes, non-parenchymal cells (lipocytes, Kupffer cells and endothelial cells, respectively) were transfected most efficiently by Lipofectin; DOTMA alone was inactive. The methods described will facilitate studies of gene regulation in individual liver cell populations.
The hyaluronic acid receptor, CD44, exists as multiple splice variants that appear to have a role in migration of tumor cells. The role of this receptor and its variants in normal wound repair is poorly understood. A central feature of wound repair in the liver is activation and migration of perisinusoidal stellate cells. We have examined CD44 expression by stellate cells from normal or injured rat liver, finding that it increases with injury and involves a distinct set of CD44 splice variants. Among the latter, variants containing the v6 exon (CD44v6) are strikingly increased. Analysis of migration of primary cells on transwell filter inserts reveals that only cells isolated from injured liver are migratory. Also, they move more rapidly on hyaluronic acid than on collagen I or collagen IV. A polyclonal antibody to recombinant CD44v6 blocks migration by 50%, whereas antibody to CD44v4 has no effect. The inhibition is specific for cells migrating on hyaluronic acid and is reversed by synthetic peptide representing the N terminus of the v6 protein. In conclusion, activated stellate cells use CD44v6 and hyaluronic acid for migration. Given the evidence that migration is required for progression of injury with scar formation, blockers of CD44v6 expression or function are candidates for preventing the deleterious effects of chronic fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.