Calcium (Ca2+) plays pivotal roles in modulating plant growth, development and stress responses. This work was conducted to study the effects of 20 mM calcium on the biomass, malondialdehyde content, chlorophyll content, ion ratio, chlorophyll a fluorescence and gas-exchange parameters, gene expression of annual honeysuckle under 50, 100 and 200 mM NaCl. At the end of treatment, Na+ concentration was increased with the mounting salinity, but a higher ratio of K+/Na2+, Ca2+/Na+, Mg2+/Na+ were obtained after calcium addition. Salinity exerted an adverse effect on the dry weights and chlorophyll content, whereas CaCl2 played a positive role. Consistent with biomass reduction, the photosynthetic rate and stomatal conductance declined in leaves of honeysuckle exposed to elevated salinity. However, the extent of reduction was much less under CaCl2 combination treatments than one caused by NaCl treatments. Exogenous calcium also protects the photochemical activity of PSII by protecting reaction centre from inactivation and maintaining electron transport from QA– to QB–. Further, exogenous calcium promoted the overexpression of LHCB coding gene Cab and Rubisco large subunit coding gene rbcL under short-term stress. In conclusion, exogenous calcium was effective in improving the salt tolerance of honeysuckle in the photosynthetic base, thereby improving the growth of plants.
Flowers are generally short-lived, and they all face a multidimensional challenge because they have to attract mutualists, compel them to vector pollen with minimal investment in rewards, and repel floral enemies during this short time window. Their displays are under complex selection, either consistent or conflicting, to maximize reproductive fitness under heterogeneous environments. The phenological or morphological mismatches between flowers and visitors will influence interspecific competition, resource access, mating success and, ultimately, population and community dynamics. To better understand the effects of the plant visitors on floral traits, it is necessary to determine the functional significance of specific floral traits for the visitors; how plants respond to both mutualists and antagonists through adaptive changes; and to evaluate the net fitness effects of biological mutualisms and antagonism on plants. In this review, we bring together insights from fields as diverse as floral biology, insect behavioral responses, and evolutionary biology to explain the processes and patterns of floral diversity evolution. Then, we discuss the ecological significance of plant responses to mutualists and antagonists from a community perspective, and propose a set of research questions that can guide the research field to integrate studies of plant defense and reproduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.