BackgroundThe development of pulsed field ablation (PFA) as a new technique for pulmonary vein isolation (PVI) has been advancing rapidly in recent years. My team's previous work has shown the safety and long-term efficacy of bipolar asymmetric pulses in animal experiments. However, in ongoing clinical trials, we have observed that atrial fibrillation (AF) recurs in some patients after surgery, but the rhythm returns to normal without surgical intervention after seven days, and there is no recurrence in the follow-up.Based on this observation, we have proposed the hypothesis that myocardial cell apoptosis may play a role in AF recurrence after PFA. Our team has designed animal experiments to verify this hypothesis and further investigate the process of PFA-induced cardiomyocyte apoptosis.MethodsPulse field ablation was performed on 15 dogs and the animals were dissected at various time points after the operation (immediately, 3 days, 7 days, 30 days, and 150 days). To obtain ablation voltage maps, electroanatomic mapping was performed before and after ablation and before dissection. The ablation area was also subjected to HE and TUNEL staining to analyze apoptosis and pathological results.ResultsThe edge area of the ablation in the pulmonary vein (PV) demonstrated continuous dynamic changes from 0 to 2 h after the operation and a slight expansion of the ablation range was observed in the long-term follow-up. Myocardial intima hyperplasia was observed from 0 to 7 days. Local apoptosis was detected from 0 to 2 h and massive, concentrated apoptosis was observed at 3 days. No recurrence of apoptosis was seen at 7 days, 30 days, and 150 days.ConclusionsThe results of this study showed that after pulse field ablation (PFA), the central ablation area of the canine heart experienced immediate cardiomyocyte death. Meanwhile, cardiomyocytes in the edge ablation area underwent apoptosis, which began from 0 to 2 h post-operation and ended between 3 and 7 days. This process occurred simultaneously with intimal thickening.In the long-term follow-up group, there was no recovery of isolation and no recurrence of cardiomyocyte apoptosis, and no change was observed in the endomyocardial intima.
Introduction The anatomical substrate for idiopathic left ventricular tachycardia (ILVT) remains speculative. Purkinje networks surrounding false tendons (FTs) might be involved in the reentrant circuit of ILVT. The objective was to evaluate the anatomical and electrophysiological features of false tendons FTs in relation to ILVT. Methods Intracardiac echocardiography (ICE) was conducted on patients with ILVT. The relationship of the FTs with ILVT was determined using electro‐anatomical mapping. Results Electrophysiological evaluation and radiofrequency ablation were conducted in 23 consecutive patients with ILVT. FTs were identified in 19/23 cases (82.6%) with P1 potentials during VT recorded at the FT in 14 of these patients (73.7%). Three FT types were identified. In type 1, the FT attached the septum to the base of the posteromedial papillary muscle (PPM) (4/19); type 2 FTs ran between the septum and the PPM apex (3/19), while in type 3, the connection occurred between the septum and apex (11/19) or between the septum and the LV free wall (1/19). The effective ILVT ablation sites were situated at the FT‐PPM (3/19) and the FT‐septum (16/19) attachment sites. Conclusions This series demonstrates the association between Purkinje fibers and FTs during catheter ablation of ILVT and verifies that left ventricular FTs are an important substrate in this type of tachycardia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.