For the urgent demand of the broadband, high efficient, parallel processing and anti-jamming capability in the field of ultra-wideband measurement control and communication. This paper puts forward a kind of channelized receive technology based on microwave photonic technology. The coherent optical comb generation module generates the signal optical comb and the local oscillator optical comb. The coherent optical comb with high repetition frequency is obtained by using cascade modulator and nonlinear technique. In order to satisfy the 10 comb tooth designed for the system, the FSR of coherent optical frequency comb is greater than 100GHz and 99.4GHz respectively, and the channel bandwidth is 600MHz. The channel division module receives the broadband RF signal from the RF front-end and modulates it to the optical frequency comb. By DPMZM single sideband modulation, 10 optical combs can be used to shift the frequency of the oscillator frequency comb. At the same time, according to the position of the 6GHz signal, the frequency comb is accurate controlled. After the WDM multiplexing device, it is selected by the high-speed optical switch controlled by the control unit. The photoelectric detection and mirror frequency suppression are realized by coherent demodulation, which consists of an optical mixer, a balance detector and a bridge. Which realizes channelized reception and cross-frequency conversion of any 6GHz wideband signal from the DC to 40 GHz band. Achieve 3dB channel consistency and mirror frequency suppression above 30dB. The results are verified by simulation and experiment. This method can also be extended to receive ultra-high speed frequency hopping signals. Which can provides technical support for ultra-wideband measurement control and communication, integrated RF front-end and electromagnetic space integration system.
Concerning future ultra wideband(UWB) real-time measurement of electromagnetic spectrum demand in electromagnetic battlefield, this paper proposes a frequency-time mapping measurement method based on microwave photonics. Frequency-time mapping, or real-time Fourier transform, maps the input ultra-wideband electromagnetic spectrum information to the output time-domain waveform. The electromagnetic spectrum signal is modulated to light by CS-SSB modulation, and frequency-time mapping is formed by using electrically modulated microring. Through simulation verification, the method can achieve frequency measurement of panoramic bandwidth signal from100MHz to 30GHz.The frequency resolution can reach 80 MHZ, whose scanning time is less than 20us.The method can achieve ultra-high speed, high-precision, broadband measurement of wideband complex electromagnetic spectrum situation, providing technical support for future electromagnetic spectrum operations.
Microwave photonic phase detectors (MPPDs) can extract ultrastable microwaves from a mode-locked laser (MLL), but their frequencies are often limited by the pulse repetition rate. Few works studied methods to break the frequency limitation. Here, a setup based on an MPPD and an optical switch is proposed to synchronize an RF signal from a voltage-controlled oscillator (VCO) to an interharmonic of an MLL and to realize the pulse repetition rate division. The optical switch is employed to realize pulse repetition rate division, and the MPPD is followed to detect the phase difference between the frequency-divided optical pulse and the microwave signal from the VCO, which is then fed back to the VCO via a proportional–integral (PI) controller. Both the optical switch and the MPPD are driven by the signal from the VCO. When the system reaches its steady state, the synchronization and repetition rate division are achieved simultaneously. An experiment is conducted to verify the feasibility. The 80½th, 80⅓rd, and 80⅔rd interharmonics are extracted, and pulse repetition rate division factors of two and three are realized. The phase noises at offset frequency of 10 kHz are improved by more than 20 dB.
For the urgent demand of the broadband, high efficient, parallel processing and high speed frequency hopping capability in the field of ultra-wideband measurement control and communication, this paper puts forward a kind of channelized receive technology based on microwave photonic technology. The coherent optical comb generation module generates the signal optical comb and the local oscillator optical comb, and coherent optical comb with high repetition frequency is obtained by using cascade modulator and nonlinear technique. In order to satisfy the 10 comb teeth designed for the system, the FSR of coherent optical frequency comb is greater than 100GHz and 99.4GHz respectively, and the channel bandwidth is 600MHz. The channel division module receives the frequency hopping signal from the RF front-end and modulates it to the optical frequency comb. By DPMZM single sideband modulation, 10 optical combs can be used to shift the frequency of the oscillator frequency comb. At the same time, according to the position of the frequency hopping signal, the frequency comb is carefully controlled. After the WDM multiplexing device, it is selected by the high-speed optical switch controlled by the control unit. And photoelectric detection and mirror frequency suppression are realized by coherent demodulation, which consists of an optical mixer, a balance detector and a bridge. Which realizes channelized reception and cross-frequency conversion of any 6GHz wideband signal from the DC to 40 GHz band. Achieve 3dB channel consistency and mirror frequency suppression above 30dB. The results are verified by simulation and experiment. This method can be used to receive ultra-wideband ultra-high speed frequency hopping signals.
Directly modulated vector beam lasers are increasingly desirable for wide applications ranging from optical manipulation to optical communications. We report the first, to our knowledge, high-speed directly modulated vector beam laser with azimuthally polarized emission. It is a microcylinder cavity interacted with a proper second-order grating on top, which enables single mode lasing and efficient surface emission. Through theoretical and numerical analysis, the laser is designed in detail. With an optimized top grating, the emission of the laser is an azimuthally polarized vector beam. With high-differential-gain material and a small active region, the laser can be directly modulated with a high 3 dB bandwidth reach of 40 GHz in simulation. The proposed high-speed directly modulated semiconductor laser with an azimuthally polarized vector beam is promising for applications in fiber space communications or quantum information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.