In pneumatic atomizers, the shaping air holes play an important role in the spraying system. The pressure and intersection of shaping air holes are the two most important parameters in engineering. In this paper, the Euler–Lagrangian method is used to describe the two-phase spray flow. The spraying process of the pneumatic nozzle is simulated numerically, and the experiment is designed to verify this simulation. By setting different air pressures and distances between the intersection and the paint hole, target surface pressure and droplet size distribution are investigated in detail, in order to explore the relationship between shaping air holes in pneumatic nozzles and overspray. From the results of the numerical simulation, it is found that an increase in the distance between the intersection and the paint hole increases the gas velocity at the central axis of the nozzle and the central pressure of the target surface, the droplet size becomes larger, and the distribution of droplets is more concentrated on the target surface, which easily leads to overspray. With the increase in the pressure of the shaping air holes, the central pressure of the target surface decreases, and the ovality of the spraying pattern on the target surface increases.
A new spray approach is proposed to overcome the disadvantages of the traditional single-orifice nozzle, such as uneven coatings, overspray, and low efficiency. Both the experimental measurements and numerical simulation are used to investigate the spray characteristics of the multiorifice nozzle. e results show the new nozzle structure is able to disperse the particles in a wider regime and reduce the central pressure. It is an effective way to produce uniform ultrafine coatings.
The breakup of viscoelastic liquid films are investigated experimentally and analytically. The breakup phenomena of viscoelastic liquid film are recorded by the time resolved high speed camera. Video images reveal the difference behavior of liquid bubble breakup for Newtonian and viscoelastic liquid. For the Newtonian liquid, cylindrical ligaments are stretched into droplets with large distributions of drop size. For the viscoelastic liquid, the pinch-off point is located on the liquid connections to the nozzle and finally the main part of the ligament no longer elongates. Furthermore, a dispersion relation based on the stability analysis is involved to predict the ligament length and drop mean size after breakup for liquid film. The calculated ligament length is validated by the measured drop mean size at higher air-to-liquid mass flow ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.