In this paper, a novel path-following and obstacle avoidance control method is given for nonholonomic wheeled mobile robots (NWMRs), based on deep reinforcement learning. The model for path-following is investigated first, and then applied to the proposed reinforcement learning control strategy. The proposed control method can achieve path-following control through interacting with the environment of the set path. The path-following control method is mainly based on the design of the state and reward function in the training of the reinforcement learning. For extra obstacle avoidance problems in following, the state and reward function is redesigned by utilizing both distance and directional perspective aspects, and a minimum representative value is proposed to deal with the occurrence of multiple obstacles in the path-following environment. Through the reinforcement learning algorithm deep deterministic policy gradient (DDPG), the NWMR can gradually achieve the path it is required to follow and avoid the obstacles in simulation experiments, and the effectiveness of the proposed algorithm is verified.
This study investigated the trajectory-planning problem of a six-axis robotic arm based on deep reinforcement learning. Taking into account several characteristics of robot motion, a multi-objective optimization approach is proposed, which was based on the motivations of deep reinforcement learning and optimal planning. The optimal trajectory was considered with respect to multiple objectives, aiming to minimize factors such as accuracy, energy consumption, and smoothness. The multiple objectives were integrated into the reinforcement learning environment to achieve the desired trajectory. Based on forward and inverse kinematics, the joint angles and Cartesian coordinates were used as the input parameters, while the joint angle estimation served as the output. To enable the environment to rapidly find more-efficient solutions, the decaying episode mechanism was employed throughout the training process. The distribution of the trajectory points was improved in terms of uniformity and smoothness, which greatly contributed to the optimization of the robotic arm’s trajectory. The proposed method demonstrated its effectiveness in comparison with the RRT algorithm, as evidenced by the simulations and physical experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.