Reactivation of consolidated memories can induce a labile period, in which these reactivated memories might be susceptible to change and need reconsolidation. Prediction error (PE) has been recognized as a necessary boundary condition for memory destabilization. Moreover, memory strength is also widely accepted as an essential boundary condition to destabilize fear memory. This study investigated whether different strengths of conditioned fear memories require different degrees of PE during memory reactivation in order for the memories to become destabilized. Here, we assessed the fear-potentiated startle and skin conductance response, using the post-retrieval extinction procedure. A violation of expectancy (PE) was induced during retrieval to reactivate enhanced (unpredictable-shock) or ordinary (predictable-shock) fear memories that were established the day before. Results showed that a PE retrieval before extinction can prevent the return of predictable-shock fear memory but cannot prevent the return of unpredictable-shock fear memory, indicating that a single PE is insufficient to destabilize enhanced fear memory. Therefore, we further investigated whether increasing the degree of PE could destabilize enhanced fear memory using different retrieval strategies (multiple PE retrieval and unreinforced CS retrieval). We found that spontaneous recovery of enhanced fear memory was prevented in both retrieval strategies, but reinstatement was only prevented in the multiple PE retrieval group, suggesting that a larger amount of PE is needed to destabilize enhanced fear memory. The findings suggest that behavioral updating during destabilization requires PE, and the degree of PE needed to induce memory destabilization during memory retrieval depends on the strength of fear memory. The study indicates that memory reconsolidation inference can be used to destabilize stronger memories, and the findings shed lights on the treatment of posttraumatic stress disorders and anxiety disorders.
Social exclusion has a significant impact on cognition, emotion, and behavior. Some behavioral studies investigated how social exclusion affects pain empathy. Conclusions were inconsistent, and there is a lack of clarity in identifying which component of pain empathy is more likely to be affected. To investigate these issues, we used a Cyberball task to manipulate feelings of social exclusion. Two groups (social exclusion and social inclusion) participated in the same pain empathy task while we recorded event-related potentials (ERP) when participants viewed static images of body parts in painful and neutral situations. The results showed early N2 differentiation between painful and neutral pictures in the central regions in both groups. The pattern at the late controlled processing stage was different. Parietal P3 amplitudes for painful pictures were significantly smaller than those for neutral pictures in the social exclusion group; they did not differ in the social inclusion group. We observed a parietal late positive potential (LPP) differentiation between painful and neutral pictures in both groups. LPP amplitudes were significantly smaller in the social exclusion group than those in the social inclusion group for painful stimuli. Our results indicate that social exclusion does not affect empathic responses during the early emotional sharing stage. However, it down-regulates empathic responses at the late cognitive controlled stage, and this modulation is attenuated gradually. The current study provides neuroscientific evidence of how social exclusion dynamically influences pain empathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.