We propose a novel quaternion product unit (QPU) to represent data on 3D rotation groups. The QPU leverages quaternion algebra and the law of 3D rotation group, representing 3D rotation data as quaternions and merging them via a weighted chain of Hamilton products. We prove that the representations derived by the proposed QPU can be disentangled into "rotation-invariant" features and "rotation-equivariant" features, respectively, which supports the rationality and the efficiency of the QPU in theory. We design quaternion neural networks based on our QPUs and make our models compatible with existing deep learning models. Experiments on both synthetic and realworld data show that the proposed QPU is beneficial for the learning tasks requiring rotation robustness.
Real-world 3D structured data like point clouds and skeletons often can be represented as data in a 3D rotation group (denoted as $\mathbb{SO}(3)$). However, most existing neural networks are tailored for the data in the Euclidean space, which makes the 3D rotation data not closed under their algebraic operations and leads to sub-optimal performance in 3D-related learning tasks. To resolve the issues caused by the above mismatching between data and model, we propose a novel non-real neuron model called \textit{quaternion product unit} (QPU) to represent data on 3D rotation groups. The proposed QPU leverages quaternion algebra and the law of the 3D rotation group, representing 3D rotation data as quaternions and merging them via a weighted chain of Hamilton products. We demonstrate that the QPU mathematically maintains the $\mathbb{SO}(3)$ structure of the 3D rotation data during the inference process and disentangles the 3D representations into ``rotation-invariant'' features and ``rotation-equivariant'' features, respectively. Moreover, we design a fast QPU to accelerate the computation of QPU. The fast QPU applies a tree-structured data indexing process, and accordingly, leverages the power of parallel computing, which reduces the computational complexity of QPU in a single thread from $\mathcal{O}(N)$ to $\mathcal {O}(\log N)$. Taking the fast QPU as a basic module, we develop a series of quaternion neural networks (QNNs), including quaternion multi-layer perceptron (QMLP), quaternion message passing (QMP), and so on. In addition, we make the QNNs compatible with conventional real-valued neural networks and applicable for both skeletons and point clouds. Experiments on synthetic and real-world 3D tasks show that the QNNs based on our fast QPUs are superior to state-of-the-art real-valued models, especially in the scenarios requiring the robustness to random rotations.<br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.