Action real-time strategy gaming (ARSG) is a cognitively demanding task which requires attention, sensorimotor skills, team cooperation, and strategy-making abilities. A recent study found that ARSG experts had superior visual selective attention (VSA) for detecting the location of a moving object that could appear in one of 24 different peripheral locations (Qiu et al., 2018), suggesting that ARSG experience is related to improvements in the spatial component of VSA. However, the influence of ARSG experience on the temporal component of VSA-the detection of an item among a sequence of items presented consecutively and quickly at a single location-still remains understudied. Using behavioral and electrophysiological measures, this study examined whether ARSG experts had superior temporal VSA performance compared to non-experts in an attentional blink (AB) task, which is typically used to examine temporal VSA. The results showed that the experts outperformed the non-experts in their detection rates of targets. Furthermore, compared to the non-experts, the experts had faster information processing as indicated by earlier P3 peak latencies in an AB period, more attentional resources distributed to targets as indicated by stronger P3 amplitudes, and a more flexible deployment of attentional resources. These findings suggest that experts were less prone to the AB effect. Thus, long-term ARSG experience is related to improvements in temporal VSA. The current findings support the benefit of video gaming experience on the development of VSA.
The aim of this study is to find a kind of low frequency oscillation transcranial alternating current stimulation, which is directly applied to the scalp epidermal, to stimulate the cerebral cortex with a large spatial range of electric field oscillation across the brain hemisphere, and then trigger the start of the Top-Down processing of sleep homeostasis, in the daytime nap. Methods: Thirty healthy subjects, to take naps, underwent an intervention of electrical stimulation at 5 Hz, applied to the dorsal lateral prefrontal cortex. The subjects in the experiments were strictly controlled, and opened their eyes when stimulation was transmitted. Subsequently, after 15 min transcranial alternating current stimulation, subjects entered the experimental procedure of sleep. Electroencephalograph was taken at baseline and during sleep. Behavioral indicators were also added to the experiment. Results: We found that the total power of Electroencephalograph activity in the theta band, as well as low-frequency power at 1-7 Hz, was significantly entrained and increased, and that alpha activity was attenuated faster and spindle activity active earlier. Even more, the transition from awake to Non-rapid eye movement stages occurs earlier. Alertness also decreased when the subjects woke up after brief sleep. Conclusion: The intervention of low frequency brain rhythmic transcranial alternating current stimulation may induce accelerated effect on sleep onset process, thereby possibly alleviating the problems related to sleep disorders such as difficulty to reach the real sleep state quickly after lying down.
Objective: A novel in-home sleep monitoring system with an 8-channel biopotential acquisition front-end chip is presented and validated via multilevel data analyses and comparision with advanced polysomnography. Methods and procedures: The chip includes a cascaded low-noise programmable gain amplifier (PGA) and 24-bit Σ-Δ analog-to-digital converter (ADC). The PGA is based on three op-amp structure while the ADC adopts cascade of integrator feedforward and feedback (CIFF-B) architecture. An innovative chopper-modulated input-scaling-down technique enhances the dynamic range. The proposed system and commercial polysomnography were used for in-home sleep monitoring of 20 healthy participants. The consistency and significance of the two groups' data were analyzed. Results: Fabricated in 180 nm BCD technology, the input-referred noise, input impedance, common-mode rejection ratio, and dynamic range of the acquisition front-end chip were 0.89 µVpp, 1.25 GΩ, 113.9 dB, and 119.8 dB. The kappa coefficients between the sleep stage labels of the three scorers were 0.80, 0.76, and 0.79. The consistency of the slowing index, multiscale entropy, and percentile features between the two devices reached 0.958, 0.885, and 0.834. The macro sleep architecture characteristics of the two devices were not significantly different (all p>0.05). Conclusion: The proposed chip was applied to develop an in-home sleep monitoring system with significantly reduced size, power, and cost. Multilevel analyses demonstrated that this system collects stable and accurate in-home sleep data. Clinical impact: The proposed system can be applied for long-term in-home sleep monitoring outside of laboratory environments and sleep disorders screening that with low cost.
Research showed that action real-time strategy gaming (ARSG) experience is related to cognitive and neural plasticity, including visual selective attention and working memory, executive control, and information processing. This study explored the relationship between ARSG experience and information transmission in the auditory channel. Using an auditory, two-choice, go/no-go task and lateralized readiness potential (LRP) as the index to partial information transmission, this study examined information transmission patterns in ARSG experts and amateurs. Results showed that experts had a higher accuracy rate than amateurs. More importantly, experts had a smaller stimulus-locked LRP component (250 – 450 ms) than amateurs on no-go trials, while the response-locked LRP component (0 – 300 ms) on go trials did not differ between groups. Thus, whereas amateurs used an asynchronous information transmission pattern, experts used a reduced asynchronous information transmission pattern or a synchronous pattern where most of processing occurred prior to response execution – an information transmission pattern that supports rapid, error-free performance. Thus, experts and amateurs may use different information transmission patterns in auditory processing. In addition, the information transmission pattern used by experts is typically observed only after long-term auditory training according to past research. This study supports the relationship between ARSG experience and the development of information processing patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.