Leptospirosis is a life-threatening, zoonotic disease with various clinical presentations, including renal injury, hepatic injury, pancreatitis, and pulmonary hemorrhage. With prompt recognition of the disease and treatment, 90% of infected dogs have a positive outcome. Therefore, rapid, early diagnosis of leptospirosis is crucial. Testing for Leptospira-specific serum antibodies using the microscopic agglutination test (MAT) lacks sensitivity early in the disease process, and diagnosis can take >2 wk because of the need to demonstrate a rise in titer. We applied machine-learning algorithms to clinical variables from the first day of hospitalization to create machine-learning prediction models (MLMs). The models incorporated patient signalment, clinicopathologic data (CBC, serum chemistry profile, and urinalysis = blood work [BW] model), with or without a MAT titer obtained at patient intake (=BW + MAT model). The models were trained with data from 91 dogs with confirmed leptospirosis and 322 dogs without leptospirosis. Once trained, the models were tested with a cohort of dogs not included in the model training (9 leptospirosis-positive and 44 leptospirosis-negative dogs), and performance was assessed. Both models predicted leptospirosis in the test set with 100% sensitivity (95% CI: 70.1–100%). Specificity was 90.9% (95% CI: 78.8–96.4%) and 93.2% (95% CI: 81.8–97.7%) for the BW and BW + MAT models, respectively. Our MLMs outperformed traditional acute serologic screening and can provide accurate early screening for the probable diagnosis of leptospirosis in dogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.