Although chlorinated organophosphate esters (Cl-OPEs) have been reported to be ubiquitously distributed in various anoxic environments, little information is available on their fate under anoxic conditions. In this study, we report two Dehalococcoides-containing enrichment cultures that transformed 3.88 ± 0.22 μmol tris(2-chloroethyl) phosphate (TCEP) and 2.61 ± 0.02 μmol tris(1-chloro-2-propyl) phosphate (TCPP) within 10 days. Based on the identification of the transformed products and deuteration experiments, we inferred that TCEP may be transformed to generate bis(2-chloroethyl) phosphate and ethene via one-electron transfer (radical mechanism), followed by C−O bond cleavage. Ethene was subsequently reduced to ethane. Similarly, TCPP was transformed to form bis(1-chloro-2-propyl) phosphate and propene. 16S rRNA gene amplicon sequencing and quantitative polymerase chain reaction analysis revealed that Dehalococcoides was the predominant contributor to the transformation of TCEP and TCPP. Two draft genomes of Dehalococcoides assembled from the metagenomes of the TCEP-and TCPP-transforming enrichment cultures contained 14 and 15 putative reductive dehalogenase (rdh) genes, respectively. Most of these rdh genes were actively transcribed, suggesting that they might contribute to the transformation of TCEP and TCPP. Taken together, this study provides insights into the role of Dehalococcoides during the transformation of representative Cl-OPEs.
Poyang Lake is an essential natural wetland in the Yangtze River basin and plays a vital role in maintaining the ecosystem function and ecological security in the middle and lower reaches of the Yangtze River. However, the relative importance and spatial heterogeneity of the impacts of human activities and land use changes on ecological security needs to be further explored. Here, we analyzed the habitat quality level around Poyang Lake in 2022 and explored the factors of habitat quality change from a geographical perspective. The land use structure changes around the Poyang Lake basin from 2000 to 2022 were quantitatively analyzed, and then the relative importance and spatial heterogeneity of each factor on ecological security changes were investigated using geographic probes. The results show that (1) The worst quality habitat (0–0.1) consists mainly of construction land (1624.9 km2) with an area of 1634.64 km2; (2) Construction land continues to increase with the most significant change, and the dynamic land use attitude is 0.47. Grassland and mudflats have the greatest decrease. The increase in cultivated land in different periods is mainly due to the shift of water surface and forest land; (3) Wetland land use change drivers are more influenced by the interaction of socioeconomic factors. The explanatory degrees of the interaction between population density and total year-end population and population density and administrative area are greater than 0.84. The data are greater than the explanatory degrees of every single factor, indicating that the land use change is mainly coupled with population density, total year-end population, and administrative area. These results reveal that human activities influence the degradation of wetlands around the Poyang Lake area. This study has significant reference value for coordinating human–land relationships in Poyang Lake, optimizing land management policy, and improving the sustainable development of cities
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.