Smart photovoltaic windows (SPWs) are functional devices possessing the capabilities of electrical power output, energy saving, and privacy protection by managing sunlight under external stimuli and potentially applicable in the fields of energy‐saving buildings, automobiles, and switchable optoelectronics. However, long response time, low power conversion efficiency (PCE), poor stability and cycling performance, and monostimuli responsive behavior restrict their practical applications. To address these issues, high‐efficiency and reliable SPWs are demonstrated by coupling multiresponsive liquid crystal/polymer composite (LCPC) films and semi‐transparent perovskite solar cells (ST‐PSCs). In this design, fast and multiple stimuli‐responsive LCPC films are utilized as an inside layer to control the transparency of SPWs. The ST‐PSCs with competitive PCE and qualified transparency acting as an outside layer offer energy generation functionality. Benefiting from repeatable transparency transition modulated by external stimuli, a series of working modes are achieved in the SPWs providing distinguished and stable energy generation, energy saving, and privacy protection performances.
Cs/FA/MA triple cation perovskite films have been well developed in the antisolvent dripping method, attributable to its outstanding photovoltaic and stability performances. However, a facile and effective strategy is still lacking for fabricating high‐quality large‐grain triple cation perovskite films via sequential deposition method a, which is one of the key technologies for high efficiency perovskite solar cells. To address this issue, a δ‐CsPbI3 intermediate phase growth (CsPbI3‐IPG) assisted sequential deposition method is demonstrated for the first time. The approach not only achieves incorporation of controllable cesium into (FAPbI3)1–x(MAPbBr3)x perovskite, but also enlarges the perovskite grains, manipulates the crystallization, modulates the bandgap, and improves the stability of final perovskite films. The photovoltaic performances of the devices based on these Cs/FA/MA perovskite films with various amounts of the δ‐CsPbI3 intermediate phase are investigated systematically. Benefiting from moderate cesium incorporation and intermediate phase‐assisted grain growth, the optimized Cs/FA/MA perovskite solar cells exhibit a significantly improved power conversion efficiency and operational stability of unencapsulated devices. This facile strategy provides new insights into the compositional engineering of triple or quadruple cation perovskite materials with enlarged grains and superior stability via a sequential deposition method.
Three-dimensional branched TiO2 architectures (3D BTA) with controllable morphologies were synthesized via a facile template-free one-pot solvothermal route. The volume ratio of deionized water (DI water) and diethylene glycol in solvothermal process is key to the formation of 3D BTA assembled by nanowire-coated TiO2 dendrites, which combines the advantages of 3D hierarchical structure and 1D nanoscale building blocks. Benefiting from such unique structural features, the BTA in full bloom achieved significantly increased specific surface areas and shortened Li(+) ion/electrons diffusion pathway. The lithium-ion batteries based on BTA in full bloom exhibited remarkably enhanced reversible specific capacity and rate performance, attributing to the high contact area with the electrolyte and the short solid state diffusion pathway for Li(+) ion/electrons promoting lithium insertion and extraction.
One‐step deposition approaches have been widely applied and developed in the fabrication of quasi‐2D perovskites. However, the regulation of quantum wells (QWs) and crystalline orientation is difficult and complicated when using this methodology. Sequential deposition is another widespread synthetic approach for preparing perovskite films and perovskite dimension engineering. In this article, δ‐CsPbI3 intermediate phase assisted sequential (IPAS) deposition is successfully carried out to fabricate MA‐free quasi‐2D ACI perovskites. The amount of the δ‐CsPbI3 intermediate phase in the PbI2 layer and the concentration of GAI molecule in the IPA solution both play important roles in the production of MA‐free quasi‐2D ACI perovskite films. The n value of the MA‐free quasi‐2D ACI perovskites can be adjusted, which affects the photovoltaic performance and device stability. Compared with one‐step deposition, the MA‐free quasi‐2D ACI perovskites prepared via IPAS deposition have opposite reverse‐graded QW distribution and improved vertical orientation, leading to a remarkable PEC of up to 18.86% and allowing the preparation of unpackaged devices with prominent working stability (80%, ~400 h). The underlying mechanism and crystallization pathway of IPAS deposition confirm that sequential deposition has unique superiority in regulating the QW distribution and crystalline orientation of quasi‐2D perovskites.image
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.