Glutamate transporters regulate synaptic concentrations of this neurotransmitter by coupling its flux to that of sodium and other cations. Available crystal structures of an archeal homologue of these transporters, GltPh, resemble an extracellular-facing state, in which the bound substrate is occluded only by a small helical hairpin segment called HP2. However, a pathway to the cytoplasmic side of the membrane is not clearly apparent. We previously modeled an alternate state of a transporter from the neurotransmitter:sodium symporter family, which has an entirely different fold, solely on the presence of inverted-topology structural repeats. In GltPh, we identified two distinct sets of inverted-topology repeats and used these repeats to model an inward-facing conformation of the protein. To test this model, we introduced pairs of cysteines into the neuronal glutamate transporter EAAC1, at positions that are >27 Å apart in the crystal structures of GltPh, but Ϸ10 Å apart in the inward-facing model. Transport by these mutants was activated by pretreatment with the reducing agent dithithreitol. Subsequent treatment with the oxidizing agent copper(II)(1,10-phenantroline) 3 abolished this activation. The inhibition of transport was potentiated under conditions thought to promote the inward-facing conformation of the transporter. By contrast, the inhibition was reduced in the presence of the nontransportable substrate analogue D,L-threo--benzyloxyaspartate, which favors the outward-facing conformation. Other conformation-sensitive accessibility measurements are also accommodated by our inward-facing model. These results suggest that the inclusion of inverted-topology repeats in transporters may provide a general solution to the requirement for two symmetry-related states in a single protein.alternating access ͉ conformationally sensitive cross-linking ͉ homology modeling ͉ neurotransmitter ͉ secondary transport
Glutamate transporters play a key role in glutamate clearance and protect the central nervous system from glutamate excitotoxicity. Dysfunctional glutamate transporters contribute to the pathogenesis of Parkinson's disease (PD); however, the mechanisms that underlie the regulation of glutamate transporters in PD are still not well characterized. Here we report that Nedd4-2 mediates the ubiquitination of glutamate transporters in 1-methyl-4- phenylpyridinium (MPP+)-treated astrocytes and in the midbrain of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP)-constructed PD model mice. Nedd4-2-mediated ubiquitination induces abnormal glutamate transporter trafficking between the membrane and cytoplasm and consequently decreases the expression and function of glutamate transporters in the membrane. Conversely, Nedd4-2 knockdown decreases glutamate transporter ubiquitination, promotes glutamate uptake and increases glutamate transporter expression in vitro and in vivo. We report for the first time that Nedd4-2 knockdown ameliorates movement disorders in PD mice and increases tyrosine hydroxylase expression in the midbrain and striatum of PD mice; Nedd4-2 knockdown also attenuates astrogliosis and reactive microgliosis in the MPTP model that may be associated with glutamate excitotoxicity. Furthermore, the SGK/PKC pathway is regulated downstream of Nedd4-2 in MPTP-treated mice. These findings indicate that Nedd4-2 may serve as a potential therapeutic target for the treatment of PD.
Parkinson’s disease (PD) is a common neurodegenerative disease, the pathological features of which include the presence of Lewy bodies and the neurodegeneration of dopaminergic neurons in the substantia nigra pars compacta. However, until recently, research on the pathogenesis and treatment of PD have progressed slowly. Glutamate and dopamine are both important central neurotransmitters in mammals. A lack of enzymatic decomposition of extracellular glutamate results in glutamate accumulating at synapses, which is mainly absorbed by excitatory amino acid transporters (EAATs). Glutamate exerts its physiological effects by binding to and activating ligand-gated ion channels [ionotropic glutamate receptors (iGluRs)] and a class of G-protein-coupled receptors [metabotropic glutamate receptors (mGluRs)]. Timely clearance of glutamate from the synaptic cleft is necessary because high levels of extracellular glutamate overactivate glutamate receptors, resulting in excitotoxic effects in the central nervous system. Additionally, increased concentrations of extracellular glutamate inhibit cystine uptake, leading to glutathione depletion and oxidative glutamate toxicity. Studies have shown that oxidative glutamate toxicity in neurons lacking functional N-methyl-D-aspartate (NMDA) receptors may represent a component of the cellular death pathway induced by excitotoxicity. The association between inflammation and excitotoxicity (i.e., immunoexcitotoxicity) has received increased attention in recent years. Glial activation induces neuroinflammation and can stimulate excessive release of glutamate, which can induce excitotoxicity and, additionally, further exacerbate neuroinflammation. Glutamate, as an important central neurotransmitter, is closely related to the occurrence and development of PD. In this review, we discuss recent progress on elucidating glutamate as a relevant neurotransmitter in PD. Additionally, we summarize the relationship and commonality among glutamate excitotoxicity, oxidative toxicity, and immunoexcitotoxicity in order to posit a holistic view and molecular mechanism of glutamate toxicity in PD.
Rapamycin protects mice against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced loss of dopaminergic neurons, which is an established model for Parkinson's disease. We demonstrated that rapamycin preserves astrocytic expression of glutamate transporters and glutamate reuptake. The protective effect was also observed in astrocyte cultures, indicating that rapamycin acts directly on astrocytes. In the MPTP model, rapamycin caused reduced expression of the E3 ubiquitin ligase Nedd4-2 (neuronal precursor cell expressed developmentally downregulated 4-2) and reduced colocalization of glutamate transporters with ubiquitin. Rapamycin increased interleukin-6 (IL-6) expression, which was associated with reduced expression of inflammatory cytokines, indicating anti-inflammatory properties of IL-6 in the MPTP model. NF-κB was shown to be a key mediator for rapamycin, whereas Janus kinase 2, signal transducer and activator of transcription 3, phosphoinositide 3-kinase, and Akt partially mediated rapamycin effects in astrocytes. These results demonstrate for the first time in a Parkinson's disease animal model that the neuroprotective effects of rapamycin are associated with glial and anti-inflammatory effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.