Eucommia ulmoides Oliver is a traditional medicinal plant of China, and it is one of the main sources of chlorogenic acid. Chlorogenic acid is an ester of caffeic acid, quinic acid, and a phenolic compound that has antibacterial, antifungal, antioxidant, and antitumor activities. The purpose of this study was to determine whether endophytic fungi isolated from Eucommia ulmoides Oliver had the same ability to produce chlorogenic acid. Primary screening was done by antibacterial and antifungal reactions, and the strain reselection was done with high-performance liquid chromatography (HPLC) to identify the fermentation products of the selected strains. Extracts of the leaf and cortex of Eucommia ulmoides Oliver were also deteted by HPLC, then positive results of HPLC were analyzed by GC-MS and LC-MS. In this study, 29 strains were isolated from Eucommia ulmoides Oliver. Most of them had antibacterial activity, and a few of them had antifungal activity. One ingredient of the B5 extract had a retention time identical to that of authentic chlorogenic acid. With GC-MS, other ingredients, isocoumarin and p-chlorocinnamide, were found. With LC-MS, chlorogenic acid and geniposide related to Eucommia ulmoides Oliver were found. The strain B5 was identified as Sordariomycete sp. Thus, endophytic fungi may produce the bioactive compound chlorogenic acid, as their host plant does, and could be used for the production of chlorogenic acid by fermentation in the future.
The full-length cDNA of a Na(+) -dependent Pi transport gene (DsSPT1) in Dunaliella salina was cloned by 3' and 5' Rapid Amplification of cDNA Ends (RACE), with an open reading frame (ORF) encoding 716 predicted amino acids, which exhibited 60.5% identity to that of Na(+) -dependent Pi transport 1 (DvSPT1) from Dunaliella viridis. Hydrophobicity and secondary structure prediction revealed 11 conserved transmembrane domains similar to those found in DvSPT1 from D. viridis and PHO89 from Saccharomyces cerevisiae. The result of real-time quantitative PCR showed that expression level of DsSPT1 was enhanced at first and reached its peak at 90 min after salt stress; however, D. salina cells rapidly absorbed extracellular inorganic phosphorus which was determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) during the first 5 min under salt stress. It suggested that D. salina on the absorption of inorganic phosphorus was regulated at DsSPTI posttranslational level.
The digital coding metasurfaces need several kinds of meta-particle structures to obtain corresponding electromagnetic wave responses and require time-consuming optimization. In this paper, we present train-symbol-shaped meta-particles with various orientations utilizing Pancharatnam–Berry (PB) phase to achieve 1-, 2-, and 3-bit digital coding metasurfaces. Terahertz wave scattering patterns of the coding metasurfaces with regular and random sequences are given and discussed. They have strongly suppressed backward scattering with approximately −13.5 dB radar cross section (RCS) reduction in a wide band range from 0.85 THz to 1.6 THz. The proposed digital coding metasurfaces provide a simple way and new opportunities for manipulating terahertz wave scattering with polarization independence.
We propose a kind of coding metasurface of an 'M'shaped metallic pattern coding particle, which can realize the flexible manipulation of terahertz waves and reduce radar cross sections effectively. In this paper, eight kinds of coding particles are obtained by rotating the 'M'shaped pattern using the Pancharatnam-Berry phase theory. We design three different coding sequences of 3bit coding metasurfaces and manipulate the incident terahertz wave to produce two, four and six beams of the reflected terahertz wave, respectively. Both theoretically calculated and numerically simulated scattering patterns of the designed coding metasurfaces demonstrate the expected manipulations. In addition, compared with the bare metal plate, the designed random coding metasurfaces can reduce the radar cross section by at least −10 dB at the frequency range 0.7-1.45 THz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.