Soils always receive microplastics (MPs) from plastic mulching, compost, and sewage irrigation, but the effects of MPs on soil environment remain largely unexplored. The objectives of this study were to investigate the effects of three MPs (membranous polyethylene (PE), fibrous polypropylene (PP), and microsphere PP) on enzyme activities and microbial community structure in one loamy and sandy soil. The concentration of microsphere PP (2 mg/g) was one-tenth of those of the other two MPs (20 mg/g). The results showed that the effects of three MPs on urease, dehydrogenase, and alkaline phosphatase activities followed the order: fibrous PP > membranous PE > microsphere PP, membranous PE > microsphere PP > fibrous PP and fibrous PP > microsphere PP > membranous PE, respectively. Results from high-throughput sequencing of 16S rRNA revealed that the membranous PE and fibrous PP raised the alpha diversities of the soil microbiota, whereas the diversity indexes of microbiota on MPs surfaces were significantly lower than those in the amended soils. MPs significantly altered the microbial community structure, especially for the enrichment of Acidobacteria and Bacteroidetes, the depletion of Deinococcus-Thermus and Chloroflexi. Aeromicrobium, Streptomyces, Mycobacterium, Janibacter, Nocardia, Arthrobacter were prone to inhabit on the MPs surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.