By using cyclic voltammetry, eosin Y film was electrodeposited on the surface of glassy carbon electrode (GCE) to obtain the modified electrode (denoted as eosin Y/GCE).
Benefiting from good ion accessibility and high electrical conductivity, graphene-based material as electrodes show promising electrochemical performance in energy storage systems. In this study, a novel strategy is devised to prepare binder-free Mn3O4-reduced graphene oxide (Mn3O4/rGO) electrodes. Well-dispersed and homogeneous Mn3O4 nanosheets are grown on graphene layers through a facile chemical co-precipitation process and subsequent flame procedure. This obtained Mn3O4/rGO nanostructures exhibit excellent gravimetric specific capacitance of 342.5 F g−1 at current density of 1 A g−1 and remarkable cycling stability of 85.47% capacitance retention under 10,000 extreme charge/discharge cycles at large current density. Furthermore, an asymmetric supercapacitor assembled using Mn3O4/rGO and activated graphene (AG) delivers a high energy density of 27.41 Wh kg−1 and a maximum power density of 8 kW kg−1. The material synthesis strategy presented in this study is facile, rapid and simple, which would give an insight into potential strategies for large-scale applications of metal oxide/graphene and hold tremendous promise for power storage applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.