Solar-driven hydrogen production from water using particulate photocatalysts is considered the most economical and effective approach to produce hydrogen fuel with little environmental concern. However, the efficiency of hydrogen production from water in particulate photocatalysis systems is still low. Here, we propose an efficient biphase photocatalytic system composed of integrated photothermal–photocatalytic materials that use charred wood substrates to convert liquid water to water steam, simultaneously splitting hydrogen under light illumination without additional energy. The photothermal–photocatalytic system exhibits biphase interfaces of photothermally-generated steam/photocatalyst/hydrogen, which significantly reduce the interface barrier and drastically lower the transport resistance of the hydrogen gas by nearly two orders of magnitude. In this work, an impressive hydrogen production rate up to 220.74 μmol h−1 cm−2 in the particulate photocatalytic systems has been achieved based on the wood/CoO system, demonstrating that the photothermal–photocatalytic biphase system is cost-effective and greatly advantageous for practical applications.
Interfaces
in Sb2S3 thin-film solar cells strongly affect
their open-circuit voltage (V
OC) and power
conversion efficiency (PCE). Finding an effective method of reducing
the defects is a promising approach for increasing the V
OC and PCE. Herein, the use of an inorganic salt SbCl3 is reported for post-treatment on Sb2S3 films for surface passivation. It is found that a thin SbCl3 layer could form on the Sb2S3 surface
and produce higher efficiency cells by reducing the defects and suppressing
nonradiative recombination. Through density functional theory calculations,
it is found that the passivation of the Sb2S3 surface by SbCl3 occurs via the interactions of Sb and
Cl in SbCl3 molecules with S and Sb in Sb2S3, respectively. As a result, incorporating the SbCl3 layer highly improves the V
OC from 0.58
to 0.72 V; an average PCE of 6.9 ± 0.1% and a highest PCE of
7.1% are obtained with an area of 0.1 cm2. The achieved
PCE is the highest value in the Sb2S3 planar
solar cells. In addition, the incorporated SbCl3 layer
also leads to good stability of Sb2S3 devices,
by which 90% of the initial performance is maintained for 1080 h of
storage under ambient humidity (85 ± 5% relative humidity) at
room temperature.
MoS shows promising applications in photocatalytic water splitting, owing to its uniquely optical and electric properties. However, the insufficient light absorption and lack of performance stability are two crucial issues for efficient application of MoS nanomaterials. Here, Au nanoparticles (NPs)@MoS sub-micrometer sphere-ZnO nanorod (Au NPs@MoS -ZnO) hybrid photocatalysts have been successfully synthesized by a facile process combining the hydrothermal method and seed-growth method. Such photocatalysts exhibit high efficiency and excellent stability for hydrogen production via multiple optical-electrical effects. The introduction of Au NPs to MoS sub-micrometer spheres forming a core-shell structure demonstrates strong plasmonic absorption enhancement and facilitates exciton separation. The incorporation of ZnO nanorods to the Au NPs@MoS hybrids further extends the light absorption to a broader wavelength region and enhances the exciton dissociation. In addition, mutual contacts between Au NPs (or ZnO nanorods) and the MoS spheres effectively protect the MoS nanosheets from peeling off from the spheres. More importantly, efficiently multiple exciton separations help to restrain the MoS nanomaterials from photocorrosion. As a result, the Au@MoS -ZnO hybrid structures exhibit an excellent hydrogen gas evolution (3737.4 μmol g ) with improved stability (91.9% of activity remaining) after a long-time test (32 h), which is one of the highest photocatalytic activities to date among the MoS based photocatalysts.
Although photocatalytic overall water splitting is a potential technology for converting solar energy into chemical fuel, the widely reported solar‐to‐hydrogen efficiency is around 1%, indicating unsatisfactory photocatalytic performance. Here, a novel photocatalyst material is designed and a whole reaction system is constructed, resulting in an integrative photothermal–photocatalytic Z‐scheme overall water splitting reaction system. In terms of materials design, a novel sulfur‐deficient ZnIn2S4/oxygen‐deficient WO3 (ZIS–WO) hybrid with surface‐carbonized wood (C‐wood) is reported. The ZIS–WO hybrid with sulfur and oxygen vacancies promotes the adsorption of visible light and the separation of charge carriers. The conductive C‐wood is strategically used as an additional electron bridge to accelerate electron transfer. In terms of system construction, the C‐wood exploits the photothermal effect to change the solid/liquid/gas triphase system to a solid/gas biphase system by transforming liquid water into steam, which drastically restrains carrier recombination, and decreases the photocatalytic reaction barrier. The H2 and O2 production rates in the proposed system are approximately 169.2 and 82.5 µmol h–1 under air mass (AM) 1.5 light irradiation, and the corresponding solar‐to‐hydrogen efficiency is as high as 1.52%. The study from photocatalyst design to reaction system construct opens a new insight for versatile and high‐performance photocatalytic overall water splitting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.