The lncRNAs have been made certain to take part in the development of most cancers in multiple ways. Here, our purpose is to making observation of the biological role and function of lncRNA CDKN2B-AS1 in human breast cancer. Twenty-eight pairs of breast cancer tissue and adjacent normal tissue from breast cancer patients were used to investigate the expression of CDKN2B-AS1 by qRT-PCR. And a lentivirus-shRNA guided CDKN2B-AS1 were to reduce its expression. The function of CDKN2B-AS1 was analyzed using a series of in vitro assays. Meanwhile, the xenograft model was used to further explicate the role of CDKN2B-AS1 in breast cancer. As for the results, there is a relative rich expression of CDKN2B-AS1 in breast cancer tissues compared with the corresponding adjacent normal tissues. Compared with the human breast epithelial cell line, the abundant expression of CDKN2B-AS1 in breast cancer cells were revealed as well. Then, knockdown CDKN2B-AS1 inhibited the malignant biological behaviors of MCF7 and T47D cells. In mechanism, CDKN2B-AS1 sponged the miR-122-5p to regulate STK39 expression. Furthermore, the inhibition effect with sh-CDKN2B-AS1 on breast cancer cells was alleviated by miR-122-5p inhibitor. Last, an in vivo model also confirmed that knockdown CDKN2B-AS1 retarded the growth of breast cancer. Our data concluded that knockdown of CDKN2B-AS1 suppresses the progression of breast cancer by miR-122-5p/STK39 axis.
Anaplastic thyroid cancer (ATC) is the most common malignant endocrine tumors which resist to majority treatment. Thus, there is impelling need to figure out the mechanism of progress of ATC. In this study, we explored the function and mechanism of lncRNA actin filamentin-1 antisense RNA (AFAP-AS1) which provided a new biomarker for ATC. Viabilities and apoptosis were tested by CCK-8, colony formation and flow cytometry. The interactions between miR-155-5p and AFAP-AS1 or ETS1 was detected by luciferase reporter assays. ETS proto-oncogene1/mitogen-activated protein kinase1 (ETS1/ERK) pathway was assessed by Western blot. Xenograft models were built to confirm the function of AFAP-AS1 in vivo. Firstly, we showed that relative RNA expression of AFAP-AS1 in ATC cells was higher than in immortalized thyroid cells. Next, AFAP-AS1 was verified as an oncogene in ATC since knock-down of AFAP-AS1 inhibited cell proliferation and accelerated apoptosis. In addition, miR-155-5p was negatively regulated by AFAP-AS1. Moreover, AFAP-AS1 regulated ETS1/ERK pathway by sponging miR-155-5p. Finally, we confirmed knock-down of AFAP-AS1 significantly suppressed tumor proliferation in vivo. Our research proved that AFAP-AS1 could facilitate progression of thyroid cancer sponging miR-155-5p through ETS1/ERK pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.