Time difference of arrival (TDoA) based on a group of sensor nodes with known locations has been widely used to locate targets. Two-step weighted least squares (TSWLS), constrained weighted least squares (CWLS), and Newton–Raphson (NR) iteration are commonly used passive location methods, among which the initial position is needed and the complexity is high. This paper proposes a hybrid firefly algorithm (hybrid-FA) method, combining the weighted least squares (WLS) algorithm and FA, which can reduce computation as well as achieve high accuracy. The WLS algorithm is performed first, the result of which is used to restrict the search region for the FA method. Simulations showed that the hybrid-FA method required far fewer iterations than the FA method alone to achieve the same accuracy. Additionally, two experiments were conducted to compare the results of hybrid-FA with other methods. The findings indicated that the root-mean-square error (RMSE) and mean distance error of the hybrid-FA method were lower than that of the NR, TSWLS, and genetic algorithm (GA). On the whole, the hybrid-FA outperformed the NR, TSWLS, and GA for TDoA measurement.
Passive source localization in shallow water has always been an important and challenging problem. Implementing scientific research, surveying, and monitoring using a short, less than ten meter long, horizontal linear array has received considerable attention in the recent years. The short array can be conveniently placed on autonomous underwater vehicles and deployed for adaptive spatial sampling. However, it is usually difficult to obtain a sufficient spatial gain for localizing long-range sources due to its limited physical size. To address this problem, a localization approach is proposed which is based on matched-field processing of the likelihood of the passive source localization in shallow water, as well as inter-position processing for the improved localization performance and the enhanced stability of the estimation process. The ability of the proposed approach is examined through the two-dimensional synthetic test cases which involves ocean environmental mismatch and position errors of the short array. The presented results illustrate the localization performance for various source locations at different signalto-noise ratios and demonstrate the build up over time of the positional parameters of the estimated source as the short array moves at a low speed along a straight line at a certain depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.