Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. • Users may freely distribute the URL that is used to identify this publication. • Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. • User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Diamond-like carbon (DLC) coatings have very attractive mechanical and tribological properties, i.e. high hardness, low friction and high wear resistance. Therefore, DLC is often used as a solid lubricant in moulds for injection moulding. Laser processing of DLC with ultrashort lasers, i.e. femtosecond lasers, can be performed both at micron and sub-micron scales, namely by producing laser-induced periodic surface structures (LIPSS). In this research, the effects of laser structuring/ texturing on DLC properties are investigated. First, the laser-processing parameters were optimised to produce uniform LIPSS without damaging a thin DLC film and then the properties of the textured DLC-coated substrates were studied. It was determined that the tribological properties of the processed surfaces remained unchanged, but the hardness of the structured/ textured DLC layers was reduced significantly. Although GAXRD and Raman spectroscopy did not show any significant crystallisation of the DLC coating after the laser irradiation, the analysis indicated that a thin graphitised layer had been formed on the surface as a result of the femtosecond laser processing.Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.