Rhizosphere microbial communities are of great importance to mediate global biogeochemical cycles, plant growth, and fitness. Yet, the processes that drive their assembly remain unclear. The perennial shrubs Caragana spp., which is well known for their role in soil and water conservation, provides an ideal system to study the biogeography of rhizosphere microorganism communities within natural ecosystems. In order to detect how bacterial rhizosphere communities vary in terms of community diversity and composition, the rhizosphere bacterial community of three Caragana species, Caragana microphylla Lam., C. liouana Zhao, and C. korshinskii Kom., which distributed in arid and semi-arid region of northern China were investigated. Across species, Proteobacteria (61.1%), Actinobacteria (16.0%), Firmicutes (8.6%), Bacteroidetes (3.0%), Acidobacteria (3.5%), Gemmatimonadetes (1.4%), and Cyanobacteria (1.0%) were the most dominant phyla in the rhizosphere of the three Caragana species. The relative abundance of Cyanobacteria was significantly higher in rhizosphere of C. korshinskii Kom. compared with C. microphylla Lam. and C. liouana Zhao, while the opposite was found for Gemmatimonadetes in rhizosphere of C. microphylla Lam. relative to C. liouana Zhao. Stepwise multiple linear regression analysis showed that both diversity and richness of the bacterial rhizosphere communities significantly and positively correlated with soil pH (p < 0.01). Distance-based redundancy analysis indicated that soil properties and non-soil parameters detected there accounted for 47.5% of bacterial phylogenetic structure variation (p < 0.01) all together. Meanwhile, soil total phosphorus accounted for the greatest proportion of community structure variance (9.7%, p < 0.01), followed by electrical conduction (6.5%), altitude (5.8%), soil pH (5.4%), mean annual precipitation (3.6%) and total nitrogen (3.6%, p < 0.05 in all cases). Furthermore, partial Mantel test suggested that bacterial rhizosphere community structure significantly correlated with geographical distance, indicating that the less geographical distant sample sites tend to harbor more similar bacterial rhizosphere community. Our results shed new light on the mechanisms of coevolution and interaction between long-lived plants and their rhizosphere bacterial communities across environmental gradients.
Broomcorn millet ( Panicum miliaceum L.) is one of the oldest domesticated crops and has been grown in arid and semiarid areas in China since 10,000 cal. BP. However, limited information is available about how bacterial communities within the rhizosphere of different broomcorn millet cultivars respond to drought stress. Here, we characterized the changes in the rhizobacterial assemblages of two broomcorn millet cultivars, namely, P. miliaceum cv. HeQu Red (HQR) and P. miliaceum YanLi 10 (YL10), from the jointing stage to the grain filling stage after they were exposed to a short-term drought stress treatment at the seedling stage. Drought significantly inhibited the growth of both cultivars, but the effect on YL10 was higher than that on HQR, indicating that the drought tolerance of HQR was greater than that of YL10. Proteobacteria (33.8%), Actinobacteria (21.0%), Acidobacteria (10.7%), Bacteroidetes (8.2%), Chloroflexi (6.3%), Gemmatimonadetes (5.9%), Firmicutes (3.5%), Verrucomicrobia (2.9%), and Planctomycetes (2.7%) were the core bacterial components of broomcorn millet rhizosphere as suggested by 16S rDNA sequencing results. The diversity and composition of bacterial rhizosphere communities substantially varied at different developmental stages of broomcorn millet. As the plants matured, the richness and evenness of the rhizobacterial community significantly decreased. Principal coordinate analysis showed that the structure of the bacterial rhizosphere community changed notably only at the flowering stage between the two cultivars, suggesting a stage-dependent effect. Although drought stress had no significant effect on the diversity and structure of the bacterial rhizosphere community between the two cultivars, differential responses to drought was found in Actinobacteria and Acinetobacter , Lysobacter , Streptomyces , and Cellvibrio . The relative abundance of Actinobacteria and Lysobacter , Streptomyces , and Cellvibrio in the YL10 rhizosphere was stimulated by the drought treatment compared with that in the HQR rhizosphere, whereas the opposite effect was found in Acinetobacter . Our results suggested that the effects of cultivars on bacterial rhizosphere communities were highly dependent on plant developmental stage, reflecting the genetic variations in the two broomcorn millet cultivars.
Exponential increase in photovoltaic installations arouses concerns regarding the impacts of large-scale solar power plants on dryland ecosystems. While the effects of photovoltaic panels on soil moisture content and plant biomass in arid ecosystems have been recognized, little is known about their influence on soil microbial communities. Here, we employed a combination of quantitative PCR, high-throughput sequencing, and soil property analysis to investigate the responses of soil microbial communities to solar panel installation. We also report on the responses of plant communities within the same solar farm. Our findings showed that soil microbial communities responded differently to the shading and precipitation-alternation effects of the photovoltaic panels in an arid ecosystem. By redirecting rainwater to the lower side, photovoltaic panels stimulated vegetation biomass and soil total organic carbon content in the middle and in front of the panels, positively contributing to carbon storage. The shade provided by the panels promoted the co-occurrence of soil microbes but inhibited the abundance of 16S rRNA gene in the soil. Increase in precipitation reduced 18S rRNA gene abundance, whereas decrease in precipitation led to decline in plant aboveground biomass, soil prokaryotic community alpha diversity, and dehydrogenase activity under the panels. These findings highlight the crucial role of precipitation in maintaining plant and soil microbial diversities in dryland ecosystems and are essential for estimating the potential risks of large-scale solar power plants on local and global climate change in the long term.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.