Relativistic electrons in the Earth's radiation belts are highly dynamic on a variety of timescales during the geomagnetic storm. Using Van Allen Probe spacecraft data, we investigate rapid enhancements of relativistic electrons in the outer radiation belt during a corotating interaction region (CIR) driven storm. Successive dipolarizations associated with 100keV‐MeV electron injections are identified. The evolution of energetic electrons is analyzed in the space of adiabatic invariants (μ, K and L*). Within less than a few hours, the phase space density (PSD) of the relativistic electrons promptly increases corresponding to injections of MeV electrons. The PSD of MeV electrons cumulatively increases by a factor of 4–10 at L* = 4.5–5.8 which is likely due to successive groups of dipolarizations and injections. Both near‐equatorial (small K) and off‐equatorial (large K) energetic electrons increase significantly. The increases in the near‐equatorial electrons are still dominant, suggesting the operation of betatron acceleration. The event study shows that successive dipolarizations associated with the CIR‐driven storm may rapidly affect relativistic electrons of the outer radiation belt over a wide range in the phase space.
A recombinant baculovirus, rv-egfp-NK, containing a reporter gene encoding the enhanced green fluorescent protein (EGFP), was used to express nattokinase (NK), a fibrinolytic enzyme, in Spodoptera frugiperda (SF-9) cells. The recombinant protein also included a histidine tag for purification using Ni(2+) resins. The recombinant NK, approximately 30 kDa, retained fibrinolytic activity (60 U/ml). The integration of the EGFP expression cassette in the Bac-to-Bac system is thus an effective method for the expression and purification of recombinant NK protein in Spodoptera frugiperda insect cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.