The pulp and paper industry growingly paid attention to the recycling and maintenance of waste paper products. Each paper-making cycle would lead to a sharp drop in the mechanical properties of the cellulosic paper, which was related to the hornification effect. Here, the recycling performance of the holocellulose paper was studied, compared with that of the cellulosic paper. Holocellulose fibers from sisal were fabricated by a gentle delignification method, and the well-preserved cellulose and hemicellulose components hindered the cocrystallization and aggregation of cellulose fibril. Holocellulose paper exhibited much more favorable recycling properties, compared with cellulosic paper. After 5 runs of recycling, holocellulose paper still shown an ultimate strength as high as 25 MPa (reduced from 35 MPa), a decrease of 27.1 %. However, cellulosic paper experienced a substantial loss in ultimate strength from 35 MPa to 9 MPa, a decrease of about 74 %. This can be attributed to the core-shell structure from cellulose and hemicellulose to weaken the hornification effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.