The objective of this article is to display the vertebral artery and bone structure at the craniocervical junction (CJVA and C(0-1-2)) with three-dimensional CT angiography (3DCTA) and identify their anatomic features and variations. Eighty-eight subjects without pathology of vertebral artery (VA) and C(0-1-2) were selected from head-neck CTA examination. 3D images were formed with volume rendering (VR) and multiplanar reconstruction (MPR). On the 3D images, CJVA and C(0-1-2) were measured, and their variations were observed. CJVA goes along C(0-1-2) with five curves, of which three curves are visibly away from C(0-1-2), one is 0.0-8.3 mm away at the second curve with 0.0-11.2 mm in width, another is 0.0-9.2 mm away at the fourth with 2.8-14.8 mm and the other is 0.0-6.2 mm away at the fifth. Statistical comparisons show that there is no significant difference in the measurements between left and right, and that the curves become smaller and farther away from C(0-1-2) with the increase of age. CJVA is not equal in size, with the biggest in the fourth curve and the smallest in the fifth. Statistical comparison shows the left CJVA is larger than the right in the fifth curve. Variations were found on CJVA in 16 cases and on C(1) in 12 cases. The anatomy and variations of CJVA and C(0-1-2) are complicated. It is of vital significance to identify their anatomic features in clinical practice.
The anatomy and variations of V(3-4) can be clearly and directly shown by 3DCTA. The understanding of vertebral artery and bony structures around there can provide anatomic basis for surgery and radiological diagnosis.
AimsTo evaluate the diagnostic value of three-dimensional rotational angiography (3D-RA) of intracranial micro-aneurysms (diameter ≤ 3 mm) and provide guidance on the value of endovascular treatment. Materials and methods 43 patients with intracranial micro-aneurysms were analyzed retrospectively, all patients had undergone angiography with both conventional 2D-DSA(Two-Dimensional Digital Subtraction Angiography) and rotational angiography with three-dimensional reconstruction; the frequency of detection of aneurysms, depiction of aneurysm neck, radiation dose, and the dosage of contrast agent were recorded respectively. Results 55 pieces of aneurysms were detected out from the 43 cases with intracranial micro-aneurysms by 3D-RA. But only 39 cases were detected out using 2D-DSA from the 55 samples, there were significant differences with regards to detection rate (P < 0.05). There were significant differences in radiation dose and dosage of contrast agent (P < 0.05) between the two methods of using 3D-RA can improve the detection rate of micro-aneurysms, which bestows obvious advantages on displaying the shape of aneurysms, the aneurysm neck at the best angle, and the relationship with the parent artery, at the same time, the amount of contrast agent and radiation dose are reduced in 3D-RA compared to 2D-DSA. Keywords Three-dimensional rotational angiography, Intracranial micro-aneurysm, Three dimensional reconstruction AimsIn order to improve the medical imaging, some immune computation theories and immune algorithms were reviewed and compared. Materials and methodsThe immune computation theories include the self and nonself theory, danger theory, artificial immune network etc. The immune algorithms include self/nonself detection algorithm, normal model construction algorithm, clonal selection algorithm, negative selection algorithm, danger model algorithm and hybrid immune algorithm etc. We improved the clonal selection algorithm to attain the optimal threshold for better segmentation of the medical images than the traditional approach. Results The X-ray medical image of the tuberculosis was processed with the improved clonal selection algorithm and noise filtering, and the output medical image of our approach is better for diagnosis than that of traditional image processing methods. ConclusionsThe immune algorithm can be improved to establish a better medical imaging, and this kind of medical application system is inspired from the human immune system. AcknowledgementsSupported by the project grants from National Natural Science Foundation of China (Grand No. 61673007, 61271114, 11572084, 11472061 and 61203325) Aims Traditional medical image classification methods focus on feature representation and classifier design. However, they seldom concerns data selection used for model training, which plays key role for model tuning and parameter optimization. This paper proposes a novel medical image classification method according to guided bagging. Materials and methods First, unsupervised learning is implemented...
Background Color-coded multiphase computed tomography angiography (mCTA) can provide time-variant blood flow information of collateral circulation for acute ischemic stroke (AIS). Purpose To compare the predictive values of color-coded mCTA, conventional mCTA, and CT perfusion (CTP) for the clinical outcomes of patients with AIS. Material and Methods Consecutive patients with anterior circulation AIS were retrospectively reviewed at our center. Baseline collateral scores of color-coded mCTA and conventional mCTA were assessed by a 6-point scale. The reliabilities between junior and senior observers were assessed by weighted Kappa coefficients. Receiver operating characteristic (ROC) curves and multivariate logistic regression model were applied to evaluate the predictive capabilities of color-coded mCTA and conventional mCTA scores, and CTP parameters (hypoperfusion and infarct core volume) for a favorable outcome of AIS. Results A total of 138 patients (including 70 cases of good outcomes) were included in our study. Patients with favorable prognoses were correlated with better collateral circulations on both color-coded and conventional mCTA, and smaller hypoperfusion and infarct core volume (all P < 0.05) on CTP. ROC curves revealed no significant difference between the predictive capability of color-coded and conventional mCTA ( P = 0.427). The predictive value of CTP parameters tended to be inferior to that of color-coded mCTA score (all P < 0.001). Both junior and senior observers had consistently excellent performances (κ = 0.89) when analyzing color-coded mCTA maps. Conclusion Color-coded mCTA provides prognostic information of patients with AIS equivalent to or better than that of conventional mCTA and CTP. Junior radiologists can reach high diagnostic accuracy when interpreting color-coded mCTA images.
Background: The corona-virus disease 2019 (COVID-19) pandemic has caused a serious public health risk. Compared with conventional high-resolution CT (C-HRCT, matrix 512), ultra-high resolution CT (U-HRCT, matrix 1024) can increase the effective pixel per unit volume by about 4 times. Our study is to evaluate the value of target reconstruction of U-HRCT in the accurate diagnosis of COVID-19. Methods: A total of 13 COVID-19 cases, 44 cases of other pneumonias, and 6 cases of ground-glass nodules were retrospectively analyzed. The data were categorized into groups A (C-HRCT) and B (U-HRCT), following which iDose4-3 and iDose4-5 were used for target reconstruction, respectively. CT value, noise, and signal-to-noise ratio (SNR) in different reconstructed images were measured. Two senior imaging doctors scored the image quality and the structure of the lesions on a 5-point scale. Chi-square test, variance analysis, and binarylogistic regression analysis were used for statistical analysis. Results: U-HRCT image can reduce noise and improve SNR with an increase of the iterative reconstruction level. The SNR of U-HRCT image was lower than that of the C-HRCT image of the same iDose4level, and the noise of U-HRCT was higher than that of C-HRCT image; the difference was statistically significant (P< 0.05). Logistic regression analysis showed thatperipleural distribution, thickening of blood vessels and interlobular septum, and crazy-paving pattern were independent indictors of the COVID-19 on U-HRCT. U-HRCT was superior to C-HRCT in showing the blood vessels, bronchial wall, and interlobular septum in the ground-glass opacities; the difference was statistically significant (P < 0.05). Conclusions:Peripleural distribution, thickening of blood vessels and interlobular septum, and crazy-paving pattern on U-HRCT are favorable signs for COVID-19. U-HRCT is superior to C-HRCT in displaying the blood vessels, bronchial walls, and interlobular septum for evaluating COVID-19. Keywords: U-HRCT, 1024 matrix, Target Reconstruction, COVID-19
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.