A concurrent topology optimization for thermoelastic structures with random and interval hybrid uncertainties is discussed in this work. A robust topology optimization method is proposed for structures composed of periodic microstructures under thermal and mechanical coupled loads. The robust objective function is defined as a linear combination of the mean and standard variance under the worst case for the robust optimization model. An efficient hybrid orthogonal polynomial expansion (HOPE) method is developed to evaluate the robust objective function. The sensitivities for the robust topology optimization are then calculated based on the uncertainty analysis. Three numerical examples are provided to verify the effectiveness of the proposed method, and the Monte Carlo scanning test is used to validate the numerical accuracy of our proposed method. For comparison purpose, the topology optimizations under deterministic assumptions are also provided for these examples to show the importance of considering hybrid uncertainties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.