Gaseous detonation propagation in a bifurcated tube was experimentally and numerically studied for stoichiometric hydrogen and oxygen mixtures diluted with argon. Pressure detection, smoked foil recording and schlieren visualization were used in the experiments. Numerical simulation was carried out at low initial pressure (8.00kPa), based on the reactive Navier–Stokes equations in conjunction with a detailed chemical reaction model. The results show that the detonation wave is strongly disturbed by the wall geometry of the bifurcated tube and undergoes a successive process of attenuation, failure, re-initiation and the transition from regular reflection to Mach reflection. Detonation failure is attributed to the rarefaction waves from the left-hand corner by decoupling leading shock and reaction zones. Re-initiation is induced by the inert leading shock reflection on the right-hand wall in the vertical branch. The branched wall geometry has only a local effect on the detonation propagation. In the horizontal branch, the disturbed detonation wave recovers to a self-sustaining one earlier than that in the vertical branch. A critical case was found in the experiments where the disturbed detonation wave can be recovered to be self-sustaining downstream of the horizontal branch, but fails in the vertical branch, as the initial pressure drops to 2.00kPa. Numerical simulation also shows that complex vortex structures can be observed during detonation diffraction. The reflected shock breaks the vortices into pieces and its interaction with the unreacted recirculation region induces an embedded jet. In the vertical branch, owing to the strength difference at any point and the effect of chemical reactions, the Mach stem cannot be approximated as an arc. This is different from the case in non-reactive steady flow. Generally, numerical simulation qualitatively reproduces detonation attenuation, failure, re-initiation and the transition from regular reflection to Mach reflection observed in experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.