Ultrasonic-assisted laser metal deposition(UALMD) technology was used to fabricate Al 4047 parts. The effect of the powder feeding laser power, remelting laser power and ultrasonic power on the relative density of the parts was investigated. The relative density, microstructure and mechanical properties of the specimens obtained by the optimized process parameters were compared with the corresponding properties of the cast alloys. The results showed that dense alloys with a maximum density of 99.1% were prepared using ultrasonic vibration and by remelting the previously deposited layer with the optimized processing parameters, and its density was almost equivalent to that of the cast parts. The microstructure of the samples using optimal laser parameters presented columnar Al dendrites and equiaxed Si particles at the boundary of each deposited layer, while the supersaturated Al solid solution was transformed into equiaxed crystal surrounded by fine fibrous Si phases at the center of the layer. Moreover, the size of the primary Al and the Si particles in the samples produced by UALMD was remarkably refined compared to that of the primary Al and Si particles in the cast structure, resulting in grain refining strengthening. The observed variation in the microstructure had an obvious impact on the tensile properties. The mechanical behavior of the deposit obtained by UALMD revealed superior tensile strength, yield strength and tensile ductility values of 227 ± 3 MPa, 107 ± 4 MPa and 12.2 ± 1.4%, which were approximately 51%, 38% and 56% higher than those of the cast materials, respectively.
A three-dimensional vehicle-axle box bearing coupling model is established. The model can calculate the contact force in three directions and obtain the dynamic response of axle box bearing under the real vehicle running environment. The load distribution on the double row tapered roller bearing and the vehicle is analyzed, and the co-simulation is conducted by comprehensively considering the force transmission between vehicle and bearing. Taking into account the great impact of defects on the bearing, three different types of bearing defects are added into the model, respectively. The simulation results verify the effectiveness of the model. The model is also verified by using the rolling and vibrating test rig of single wheelset. It is concluded that the simulation results show good agreement with experimental results. The influence of track irregularity on the system motion state is studied by using axis trajectory and vibration RMS (Root Mean Square value). The results show that the influence of track irregularity and wheel flat scar on axle box bearing cannot be ignored. The RMS of acceleration will change greatly due to the existence of defects. Wheel flat scar will greatly interfere with the extraction of bearing defect, but it can be selected at high speed and low frequency to monitor the existence of wheel flat scar, and select low speed and high frequency to monitor the existence of bearing defect. The research results are helpful to the detection of wheel flat scar and axle box bearing defect.
In this paper some existing methods of Blind Source Separation (BSS) are analyzed and the general framework of BSS based on Joint Diagonalization (JD) is presented. Fractional Fourier Transform (FrFT) is reviewed, and a new property of FrFT is established and proved, namely the mutually uncorrected signals would still be uncorrelated after FrFT. So a new method of BSS based on this property is put forward. And this new method has some other strong merits compared with the existing methods, such as fast computation speed and facility to deal with time-varying or non-stationary signals. The comparison of this method with the existing ones shows that this method is more practicable when used for simulation of signal selected randomly. At last this method is used in fault diagnosis for the rolling bearing of a freight train, and the results illustrate the feasibility and potential ability of this method in fault diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.