It is of great importance to identify quantitative trait loci (QTL) controlling fiber quality traits and yield components for future marker-assisted selection (MAS) and candidate gene function identifications. In this study, two kinds of traits in 231 F6:8 recombinant inbred lines (RILs), derived from an intraspecific cross between Xinluzao24, a cultivar with elite fiber quality, and Lumianyan28, a cultivar with wide adaptability and high yield potential, were measured in nine environments. This RIL population was genotyped by 122 SSR and 4729 SNP markers, which were also used to construct the genetic map. The map covered 2477.99 cM of hirsutum genome, with an average marker interval of 0.51 cM between adjacent markers. As a result, a total of 134 QTLs for fiber quality traits and 122 QTLs for yield components were detected, with 2.18–24.45 and 1.68–28.27% proportions of the phenotypic variance explained by each QTL, respectively. Among these QTLs, 57 were detected in at least two environments, named stable QTLs. A total of 209 and 139 quantitative trait nucleotides (QTNs) were associated with fiber quality traits and yield components by four multilocus genome-wide association studies methods, respectively. Among these QTNs, 74 were detected by at least two algorithms or in two environments. The candidate genes harbored by 57 stable QTLs were compared with the ones associated with QTN, and 35 common candidate genes were found. Among these common candidate genes, four were possibly “pleiotropic.” This study provided important information for MAS and candidate gene functional studies.
Polyamines have been shown to delay cellular and organismal aging and to provide cardiovascular protection in humans. Because age-related cardiovascular dysfunction is often accompanied by impaired mitochondrial biogenesis and function, we explored the ability of spermidine (SPD), a major mammalian polyamine, to attenuate cardiac aging through activation of mitochondrial biogenesis. Cardiac polyamine levels were reduced in aged (24-month-old) rats. Six-week SPD supplementation restored cardiac polyamine content, preserved myocardial ultrastructure, and inhibited mitochondrial dysfunction. Immunoblotting showed that ornithine decarboxylase (ODC) and SPD/spermine N1-acetyltransferase (SSAT) were downregulated and upregulated, respectively, in the myocardium of older rats. These changes were paralleled by age-dependent downregulation of components of the sirtuin-1/peroxisome proliferator-activated receptor gamma coactivator alpha (SIRT1/PGC-1α) signaling pathway, an important regulator of mitochondrial biogenesis. SPD administration increased SIRT1, PGC-1α, nuclear respiratory factors 1 and 2 (NRF1, NRF2), and mitochondrial transcription factor A (TFAM) expression; decreased ROS production; and improved OXPHOS performance in senescent (H2O2-treated) cardiomyocytes. Inhibition of polyamine biosynthesis or SIRT1 activity abolished these effects. PGC-1α knockdown experiments confirmed that SPD activated mitochondrial biogenesis through SIRT1mediated deacetylation of PGC-1α. These data provide new insight into the antiaging effects of SPD, and suggest potential applicability to protect against deterioration of cardiac function with aging.
Mucor circinelloides has been commonly used as the model microbe to investigate lipid production as an oleaginous fungus. Mitochondrial citrate transporter can catalyze the translocation of the citrate, accumulated from TCA cycle, across the mitochondrial inner membrane. The extra-mitochondrial citrate is then cleaved by ATP-citrate lyase to oxaloacetate (OAA) and acetyl-CoA. Acetyl-CoA together with NADPH generated in cytosol is used for fatty acid biosynthesis. Thus, citrate transporters provide a link between TCA cycle in mitochondria and fatty acid biosynthesis in cytosol. However, the role of citrate transporters for lipid accumulation in oleaginous fungi is not clear. Two genes coding for citrate transporters, named citrate transporter (ct) and tricarboxylate transporter (tct) respectively, were present in the genome of oleaginous fungus M. circinelloides WJ11, a high lipid producing strain (36%, lipid/cell dry weight). As the mutant of strain CBS 277.49 (15%, lipid/cell dry weight) has been constructed and its genetic engineering tools are available for gene manipulation, so in this work, we investigated the role of citrate transporters in regulating lipid biosynthesis by overexpressing the citrate transporters of M. circinelloides WJ11 in CBS 277.49. Results: Our results showed that overexpression of ct and tct led to increased lipid accumulation by 44% (from 13.0% to 18.8%, w/w, CDW) and 68% (from 13.0% to 21.8%, w/w, CDW), respectively. Moreover, extracellular citrate concentration in ct-overexpressing strains (4.91 mM) and tct-overexpressing (3.25 mM) were significantly decreased by 20% and 47% respectively compared to the control (6.09 mM). Furthermore, overexpression of the citrate transporter genes activated the downstream steps in lipid biosynthesis, such as ATP citrate lyase (acl gene) and fatty acid synthases (fas1 and fas2 genes), indicating a greater flux of carbon went into fatty acid biosynthesis. Conclusions: This is the first report showing that citrate transporters involved in lipid accumulation in M. circinelloides. Both citrate transporter and tricarboxylate transporter could transport mitochondrial citrate to cytoplasm, which could provide more citrate to be cleaved by increased ACL to provide more acetyl-CoA and NADPH for increased FAS to synthesize fatty acids, thus, play a vital role in lipid biosynthesis in oleaginous fungus M. circinelloides.
Background Verticillium wilt (VW) caused by Verticillium dahliae (Kleb) is one of the most destructive diseases of cotton. The identification of highly resistant QTLs or genes in the whole cotton genome is quite important for developing a VW-resistant variety and for further molecular design breeding.ResultsIn the present study, BC1F1, BC1S1, and BC2F1 populations derived from an interspecific backcross between the highly resistant line Hai1 (Gossypium barbadense L.) and the susceptible variety CCRI36 (G. hirsutum L.) as the recurrent parent were constructed. Quantitative trait loci (QTL) related to VW resistance were detected in the whole cotton genome using a high-density simple sequence repeat (SSR) genetic linkage map from the BC1F1 population, with 2292 loci covering 5115.16 centiMorgan (cM) of the cotton (AD) genome, and the data concerning VW resistance that were obtained from four dates of BC2F1 in the artificial disease nursery and one date of BC1S1 and BC2F1 in the field. A total of 48 QTLs for VW resistance were identified, and 37 of these QTLs had positive additive effects, which indicated that the G. barbadense alleles increased resistance to VW and decreased the disease index (DI) by about 2.2–10.7. These QTLs were located on 19 chromosomes, in which 33 in the A subgenome and 15 QTLs in the D subgenome. The 6 QTLs were found to be stable. The 6 QTLs were consistent with those identified previously, and another 42 were new, unreported QTLs, of which 31 QTLs were from G. barbadense. By meta-analysis, 17 QTL hotspot regions were identified and 10 of them were new, unreported hotspot regions. 29 QTLs in this paper were in 12 hotspot regions and were all from G. barbadense.ConclusionsThese stable or consensus QTL regions warrant further investigation to better understand the genetics and molecular mechanisms underlying VW resistance. This study provides useful information for further comparative analysis and marker-assisted selection in the breeding of disease-resistant cotton. It may also lay an important foundation for gene cloning and further molecular design breeding for the entire cotton genome.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-3128-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.