Previous neuroimaging studies have mainly focused on alterations of static and dynamic functional connectivity in patients with generalized anxiety disorder (GAD). However, the characteristics of local brain activity over time in GAD are poorly understood. This study aimed to investigate the abnormal time‐varying local brain activity of GAD by using the amplitude of low‐frequency fluctuation (ALFF) method combined with sliding‐window approach. Group comparison results showed that compared with healthy controls (HCs), patients with GAD exhibited increased dynamic ALFF (dALFF) variability in widespread regions, including the bilateral dorsomedial prefrontal cortex, hippocampus, thalamus, striatum; and left orbital frontal gyrus, inferior parietal lobule, temporal pole, inferior temporal gyrus, and fusiform gyrus. The abnormal dALFF could be used to distinguish between patients with GAD and HCs. Increased dALFF variability values in the striatum were positively correlated with GAD symptom severity. These findings suggest that GAD patients are associated with abnormal temporal variability of local brain activity in regions implicated in executive, emotional, and social function. This study provides insight into the brain dysfunction of GAD from the perspective of dynamic local brain activity, highlighting the important role of dALFF variability in understanding neurophysiological mechanisms and potentially informing the diagnosis of GAD.
Emerging evidence has associated autism spectrum disorder (ASD) with static functional connectivity abnormalities between multiple brain regions. However, the temporal dynamics of intra-and interhemispheric functional connectivity patterns remain unknown in ASD. Resting-state functional magnetic resonance imaging data were analyzed for 105 ASD and 102 demographically matched typically developing control (TC) children (age range: 7-12 years) available from the Autism Brain Imaging Data Exchange database. Whole-brain functional connectivity was decomposed into ipsilateral and contralateral functional connectivity, and sliding-window analysis was utilized to capture the intra-and interhemispheric dynamic functional connectivity density (dFCD) patterns. The temporal variability of the functional connectivity dynamics was further quantified using the standard deviation (SD) of intra-and interhemispheric dFCD across time. Finally, a support vector regression model was constructed to assess the relationship between abnormal dFCD variance and autism symptom severity. Both intra-and interhemispheric comparisons showed increased dFCD variability in the anterior cingulate cortex/medial prefrontal cortex and decreased variability in the fusiform gyrus/inferior temporal gyrus in autistic children compared with TC children. Autistic children additionally showed lower intrahemispheric dFCD variability in sensorimotor regions including the precentral/postcentral gyrus. Moreover, aberrant temporal variability of the contralateral dFCD predicted the severity of social communication impairments in autistic children.These findings demonstrate altered temporal dynamics of the intra-and interhemispheric functional connectivity in brain regions incorporating social brain network of ASD, and highlight the potential role of abnormal interhemispheric communication dynamics in neural substrates underlying impaired social processing in ASD. K E Y W O R D Sautism spectrum disorder, dynamic functional connectivity, interhemisphere, intrahemisphere, resting-state functional magnetic resonance imaging
The clinical misdiagnosis ratio of bipolar disorder (BD) patients to major depressive disorder (MDD) patients is high. Recent findings hypothesize that the ability to flexibly recruit functional neural networks is differently altered in BD and MDD patients. This study aimed to explore distinct aberrance of network flexibility during dynamic networks configuration in BD and MDD patients. Resting state functional magnetic resonance imaging of 40 BD patients, 61 MDD patients, and 61 matched healthy controls were recruited. Dynamic functional connectivity matrices for each subject were constructed with a sliding window method. Then, network switching rate of each node was calculated and compared among the three groups. BD and MDD patients shared decreased network switching rate of regions including left precuneus, bilateral parahippocampal gyrus, and bilateral dorsal medial prefrontal cortex. Apart from these regions, MDD patients presented specially decreased network switching rate in the bilateral anterior insula, left amygdala, and left striatum. Taken together, BD and MDD patients shared decreased network switching rate of key hubs in default mode network and MDD patients presented specially decreased switching rate in salience network and striatum. We found shared and distinct aberrance of network flexibility which revealed altered adaptive functions during dynamic networks configuration of BD and MDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.