Mechanisms, recent advancements and perspectives concerning nonconventional luminophores free of classic conjugates but with intrinsic photoluminescence are discussed.
SUMMARYIn this paper, we present a mathematical framework of the bridging scale method (BSM), recently proposed by Liu et al. Under certain conditions, it had been designed for accurately and efficiently simulating complex dynamics with different spatial scales. From a clear and consistent derivation, we identify two error sources in this method. First, we use a linear finite element interpolation, and derive the coarse grid equations directly from Newton's second law. Numerical error in this length scale exists mainly due to inadequate approximation for the effects of the fine scale fluctuations. An modified linear element (MLE) scheme is developed to improve the accuracy. Secondly, we derive an exact multiscale interfacial condition to treat the interfaces between the molecular dynamics region D and the complementary domain C , using a time history kernel technique. The interfacial condition proposed in the original BSM may be regarded as a leading order approximation to the exact one (with respect to the coarsening ratio). This approximation is responsible for minor reflections across the interfaces, with a dependency on the choice of D . We further illustrate the framework and analysis with linear and non-linear lattices in one-dimensional space.
Thin endometrium is a primary cause of failed embryo transfer, resulting in long‐term infertility and negative family outcomes. While hormonal treatments have greatly improved fertility results for some women, these responses remain unsatisfactory due to damage and infection of the complex endometrial microenvironment. In this study, a multifunctional microenvironment‐protected exosome‐hydrogel is designed for facilitating endometrial regeneration and fertility restoration via in situ microinjection and endometrial regeneration. This exosome hydrogel is formulated via Ag+‐S dynamic coordination and fusion with adipose stem cell‐derived exosomes (ADSC‐exo), yielding an injectable preparation that is sufficient to mitigate infection risk while also possessing the antigenic contents and paracrine signaling activity of the ADSC source cells, enabling regeneration of the endometrial microenvironment. In vitro, this exosome‐hydrogel exerts an outstanding neovascularization‐promoting effect, increased human umbilical vein endothelial cell proliferation and tube formation for 1.87 and 2.2 folds. In vivo, microenvironment‐protected exosome‐hydrogel also reveals to promote neovascularization and tissue regeneration while suppressing local tissue fibrosis. Importantly, regenerated endometrial tissue is more receptive to give embryos and birth to a healthy newborn. This microenvironment‐protected exosome‐hydrogel system offers a convenient, safe, and noninvasive approach for repairing thin endometrium and fertility restoration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.