This paper presented construction and strain distributions for light-weight wood-fiber-based structural panels with tri-grid core made from phenolic impregnated laminated paper composites under bending. A new fastening configuration of slots in the faces and tabs on the core was applied to the face/core interfaces of the sandwich panel in addition to epoxy resin. Both normal strain gages and shear strain gages were attached on these panels to analyze inside strain distributions by third point load bending test. The purpose of the bending test was to investigate the various strain distributions of panels with different face/core configurations that identified the critical failure modes for future design. In this research, four panels with different configurations were constructed to analyze the influence of strain distributions for bending behavior. Either maximum localized normal strain or shear strain were used to judge failures and associated failure modes through observation. Test results of strain distribution showed normal strain was primarily carried by both top and bottom faces. As bending load increased, compression buckling occurred on the top surface of some panels with thinner faces. Face thickness and stiffness significantly affected the strength of the panel as evident by nonlinear strain behavior. Meanwhile, the shear strain was primarily taken by the ribs in the structural core, and shear failure always occurred in the longitudinal linear ribs of core with thicker faces. The shear strain in the cross ribs was approximately half that of the longitudinal linear ribs in the same section of shear zone, which was consistent with the geometric formula. The problem of panel imperfections resulting in either face compression buckling or rib shear buckling could be overcome by further design optimization, and the analytical modeling for bending design and evaluation was presented.
This paper presents experimental results of both quasi-static compression and low-velocity impact behavior for tri-axial bio-composite structural panels using a spherical load head. Panels were made having different core and face configurations. The results showed that panels made having either carbon fiber fabric composite faces or a foam-filled core had significantly improved impact and compressive performance over panels without either. Different localized impact responses were observed based on the location of the compression or impact relative to the tri-axial structural core; the core with a smaller structural element had better impact performance. Furthermore, during the early contact phase for both quasi-static compression and low-velocity impact tests, the panels with the same configuration had similar load-displacement responses. The experimental results show basic compression data could be used for the future design and optimization of tri-axial bio-composite structural panels for potential impact applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.