Missing values exist widely in mass-spectrometry (MS) based metabolomics data. Various methods have been applied for handling missing values, but the selection can significantly affect following data analyses. Typically, there are three types of missing values, missing not at random (MNAR), missing at random (MAR), and missing completely at random (MCAR). Our study comprehensively compared eight imputation methods (zero, half minimum (HM), mean, median, random forest (RF), singular value decomposition (SVD), k-nearest neighbors (kNN), and quantile regression imputation of left-censored data (QRILC)) for different types of missing values using four metabolomics datasets. Normalized root mean squared error (NRMSE) and NRMSE-based sum of ranks (SOR) were applied to evaluate imputation accuracy. Principal component analysis (PCA)/partial least squares (PLS)-Procrustes analysis were used to evaluate the overall sample distribution. Student’s t-test followed by correlation analysis was conducted to evaluate the effects on univariate statistics. Our findings demonstrated that RF performed the best for MCAR/MAR and QRILC was the favored one for left-censored MNAR. Finally, we proposed a comprehensive strategy and developed a public-accessible web-tool for the application of missing value imputation in metabolomics (https://metabolomics.cc.hawaii.edu/software/MetImp/).
Background With evidence of sustained transmission in more than 190 countries, coronavirus disease 2019 (COVID-19) has been declared a global pandemic. Data are urgently needed about risk factors associated with clinical outcomes. Methods A retrospective review of 323 hospitalized patients with COVID-19 in Wuhan was conducted. Patients were classified into three disease severity groups (non-severe, severe, and critical), based on initial clinical presentation. Clinical outcomes were designated as favorable and unfavorable, based on disease progression and response to treatments. Logistic regression models were performed to identify risk factors associated with clinical outcomes, and log-rank test was conducted for the association with clinical progression. Results Current standard treatments did not show significant improvement in patient outcomes. By univariate logistic regression analysis, 27 risk factors were significantly associated with clinical outcomes. Multivariate regression indicated age over 65 years (p<0.001), smoking (p=0.001), critical disease status (p=0.002), diabetes (p=0.025), high hypersensitive troponin I (>0.04 pg/mL, p=0.02), leukocytosis (>10 x 109/L, p<0.001) and neutrophilia (>75 x 109/L, p<0.001) predicted unfavorable clinical outcomes. By contrast, the administration of hypnotics was significantly associated with favorable outcomes (p<0.001), which was confirmed by survival analysis. Conclusions Hypnotics may be an effective ancillary treatment for COVID-19. We also found novel risk factors, such as higher hypersensitive troponin I, predicted poor clinical outcomes. Overall, our study provides useful data to guide early clinical decision making to reduce mortality and improve clinical outcomes of COVID-19.
Background With evidence of sustained transmission in more than 190 countries, coronavirus disease 2019 (COVID-19) has been declared a global pandemic. As such, data are urgently needed about risk factors associated with clinical outcomes. Methods A retrospective chart review of 323 hospitalized patients with COVID-19 in Wuhan was conducted. Patients were classified into three disease severity groups (non-severe, severe, and critical), based on their initial clinical presentation. Clinical outcomes were designated as favorable and unfavorable, based on disease progression and response to treatments. Logistic regression models were performed to identify factors associated with clinical outcomes, and logrank test was conducted for the association with clinical progression. Results Current standard treatments did not show significant improvement on patient outcomes in the study. By univariate logistic regression model, 27 risk factors were significantly associated with clinical outcomes. Further, multivariate regression indicated that age over 65 years, smoking, critical disease status, diabetes, high hypersensitive troponin I (>0.04 pg/mL), leukocytosis (>10 x 109/L) and neutrophilia (>75 x 109/L) predicted unfavorable clinical outcomes. By contrast, the use of hypnotics was significantly associated with favorable outcomes. Survival analysis also confirmed that patients receiving hypnotics had significantly better survival. Conclusions To our knowledge, this is the first indication that hypnotics could be an effective ancillary treatment for COVID-19. We also found that novel risk factors, such as higher hypersensitive troponin I, predicted poor clinical outcomes. Overall, our study provides useful data to guide early clinical decision making to reduce mortality and improve clinical outcomes of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.