In this paper, a novel near-field high-resolution image focusing technique is proposed. With the emergence of Millimeter-wave (mmWave) devices, near-field synthetic aperture radar (SAR) imaging is widely used in automotive-mounted SAR imaging, UAV imaging, concealed threat detection, etc. Current research is mainly confined to the laboratory environment, thus ignoring the adverse effects of the non-ideal experimental environment on imaging and subsequent detection in real scenarios. To address this problem, we propose an optimized Back-Projection Algorithm (BPA) that considers the loss path of signal propagation among space by converting the amplitude factor in the echo model into a beam-weighting. The proposed algorithm is an image focusing algorithm for arbitrary and irregular arrays, and effectively mitigates sparse array imaging ghosts. We apply the 3DRIED dataset to construct image datasets for target detection, comparing the kappa coefficients of the proposed scheme with those obtained from classic BPA and Range Migration Algorithm (RMA) with amplitude loss compensation. The results show that the proposed algorithm attains a high-fidelity image reconstruction focus.
Sparse imaging is widely used in synthetic aperture radar (SAR) imaging. Compared with the traditional matched filtering (MF) methods, sparse SAR imaging can directly image the scattered points of a target and effectively reduce the sidelobes and clutter in irregular samples. However, in view of the large-scale computational complexity of sparse reconstruction with raw echo data, traditional sparse reconstruction algorithms often require huge computational expense. To solve the above problems, in this paper, we propose a 3D near-field sparse SAR direct imaging algorithm for irregular trajectories, adopting a piece of preliminary information in the SAR image to update the dictionary matrix dimension, using the Gaussian iterative method, and optimizing the signal-processing techniques, which can achieve 3D sparse reconstruction in a more direct and rapid manner. The proposed algorithm was validated through simulations and empirical study of irregular scanning scenarios and compared with traditional MF and sparse reconstruction methods, and was shown to significantly reduce the computation time and effectively preserve the complex information of the scenes to achieve high-resolution image reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.