Structures composed of two photonic crystal slabs are fabricated, measured, and simulated around 13.5 GHz. Experimental and simulated results are in good agreement. The transmission spectrum is highly sensitive to the distance between the two slabs, which demonstrates that the structures under investigation can be used to achieve displacement sensors.
In this paper, a compact and low-cost electronic circuit system is designed to time reverse short impulses in microwave regime. The proposed system consists of three major parts: (i) Fourier transform, to obtain discrete spectra of input impulses; (ii) Digital signal processing, to digitize spectral samples resulted from the first part and process them; and finally (iii) Inverse Fourier transform, to synthesize time-reversed impulses using discrete continuous wave elements. This architecture is composed of commercially available semi-conductor components, including oscillators, multipliers/mixers, band-pass-filters, amplifiers, and switches. Thus, it can embody a system-on-chip implementation of real-time time-reversal. Its performance is demonstrated by Advanced Design System simulations, with time-reversal of impulses with around 1.4 ns temporal width and [22, 29] GHz spectral coverage in noisy environments as examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.