The Mars Atmosphere and Volatile Evolution mission has obtained comprehensive particle and magnetic field measurements. The Solar Wind Electron Analyzer provides electron energy‐pitch angle distributions along the spacecraft trajectory that can be used to infer magnetic topology. This study presents pitch angle‐resolved electron energy shape parameters that can distinguish photoelectrons from solar wind electrons, which we use to deduce the Martian magnetic topology and connectivity to the dayside ionosphere. Magnetic topology in the Mars environment is mapped in three dimensions for the first time. At low altitudes (<400 km) in sunlight, the northern hemisphere is found to be dominated by closed field lines (both ends intersecting the collisional atmosphere), with more day‐night connections through cross‐terminator closed field lines than in the south. Although draped field lines with ~100 km amplitude vertical fluctuations that intersect the electron exobase (~160–220 km) in two locations could appear to be closed at the spacecraft, a more likely explanation is provided by crustal magnetic fields, which naturally have the required geometry. Around 30% of the time, we observe open field lines from 200 to 400 km, which implies three distinct topological layers over the northern hemisphere: closed field lines below 200 km, open field lines with foot points at lower latitudes that pass over the northern hemisphere from 200 to 400 km, and draped interplanetary magnetic field above 400 km. This study also identifies open field lines with one end attached to the dayside ionosphere and the other end connected with the solar wind, providing a path for ion outflow.
Magnetic topology is important for understanding the Martian plasma environment, including particle precipitation, energy transport, cold ion escape, and wave-particle interaction. In this study, we combine two independent but complementary methods in order to determine magnetic topology based on superthermal electron energy and pitch angle distributions. This approach removes ambiguities that result from using either energy or pitch angle alone, providing a more accurate and comprehensive determination of magnetic topology than previous studies. By applying this combined technique, we are able to identify seven magnetic topologies, including four types of closed field lines, two types of open field lines, and draped. All seven topologies are present in the Mars environment and are mapped in longitude, latitude, solar zenith angle, and altitude with the combined technique near the terminator. We find that closed field lines with double-sided loss cones are frequently present over stronger crustal field regions at higher altitudes. We also show that the cross-terminator closed field lines are more spatially confined over strong crustal regions, likely connecting nearby magnetic crustal patches. In contrast, cross-terminator closed loops over weak crustal regions have more distantly separated foot points, most likely connecting distant crustal patches. Key Points:• A technique combining e-pitch angle and energy distribution is developed to most accurately infer up to seven magnetic topologies at Mars • Closed magnetic loops with trapped electrons occur frequently over stronger crustal field regions at higher altitudes • Cross-terminator closed loops are more spatially confined over strong crustal regions and distantly separated over weak crustal regions Supporting Information:• Supporting Information S1
Magnetic field lines at Mars act as direct pathways for both energy inflow and ion escape. Local variations in magnetic field topology can therefore directly impact the interaction between the solar wind and the Martian ionosphere. One method of analyzing magnetic topology is through the use of electron pitch angle distributions (PADs). Previous PAD investigations have characterized magnetic topology in the Martian system using data from the Mars Global Surveyor spacecraft, but these studies were orbitally constrained to ∼400 km altitude and 2 a.m./2 p.m. local time. With the Mars Atmosphere and Volatile Evolution (MAVEN) mission, we are now able to extend this analysis to a larger range of altitudes and local times. Here we use electron PADs measured using the Solar Wind Electrostatic Analyzer and Magnetometer instruments on MAVEN to analyze the magnetic topology of the nightside Martian environment. We use several characteristic PAD shapes to determine where Martian magnetic field lines are open or closed to the solar wind and present frequency maps of how these PAD shapes vary both geographically and with altitude. Finally, we present an initial analysis of the variation of the PAD shapes with local time, finding that trapped electron distributions become increasingly frequent as crustal fields rotate from dusk to dawn across the nightside of Mars.
Measurements provided by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft are analyzed to investigate the Martian magnetotail configuration as a function of interplanetary magnetic field (IMF) BY. We find that the magnetotail lobes exhibit a ~45° twist, either clockwise or counterclockwise from the ecliptic plane, up to a few Mars radii downstream. Moreover, the associated cross‐tail current sheet is rotated away from the expected location for a Venus‐like induced magnetotail based on nominal IMF draping. Data‐model comparisons using magnetohydrodynamic simulations are in good agreement with the observed tail twist. Model field line tracings indicate that a majority of the twisted tail lobes are composed of open field lines, surrounded by draped IMF. We infer that dayside magnetic reconnection between the crustal fields and draped IMF creates these open fields and may be responsible for the twisted tail configuration, similar to what is observed at Earth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.