Grouting is an important method to reinforce soft coal roadway, and the presence of primary cracks in the coal body has an important influence on the grouting effect. With the discrete element simulation method, the grouting process of the soft coal seam was simulated. The mechanism of primary cracks on grouting was revealed, while the influence of fracture characteristics and grouting pressure on the grouting effect was analyzed. The results demonstrated that grouting in the soft coal seam involves the stages of seepage, rapid splitting, slow splitting, and stability. Due to the presence of primary cracks, the grouting diffusion radius increased significantly. Under the slurry pressure, the tensile stress concentration was formed at the crack tip, and the slurry split the coal once the splitting pressure was reached. In addition, the distribution characteristics of fractures are found to have a great influence on the grouting effect. It is observed that smaller fracture spacing is associated with a larger slurry diffusion radius and thus easier penetration of the primary crack tips. The fracture angle affects the direction of fracture propagation. The secondary fracture formed by splitting is a tensile fracture, which is more likely to extend along the direction parallel to the maximum principal stress. Overall, these simulation results have guiding significance for the setting of reasonable spacing of grouting holes in the practice of grouting engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.