Directing the architecture of complex organic nanostructures is desirable and still remains a challenge in areas of materials science due to their structure-dependent collective optoelectronic properties. Herein, we demonstrate a simple and versatile solution strategy that allows surface tension to drive low-dimensional nanostructures to aggregate into complex structures via a lab in a droplet technique. By selecting a suitable combination of a solvent and an anti-solvent with controllable surface tension difference, the droplets can be automatically cracked into micro-droplets, which provides an aggregation force directed toward the centre of the droplet to drive the low-dimensional building blocks to form the special aggregations during the self-assembly process. This synthetic strategy has been shown to be universal for organic materials, which is beneficial for further optimizing the optoelectronic properties. These results contribute to gaining an insightful understanding on the detailed growth mechanism of complex organic nanostructures and greatly promoting the development of organic nanophotonics.
Combined laser-induced breakdown spectroscopy (LIBS) and hyperspectral imaging (HSI) with machine learning algorithms can be used to identify rice quality and the place of origin of rice production rapidly and accurately.
Fe[Fe(CN)6] nanostructures with controllable morphologies are hydrothermally synthesized from aqueous mixtures of K3[Fe(CN)6, Na2HPO4 or NaH2PO4, and cetyltrimethylammonium bromide (autoclave, 140 °C, 48 h).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.