This paper discusses the problem of decoding gestures represented by surface electromyography (sEMG) signals in the presence of variable force levels. It is an attempt that multi-task learning (MTL) is proposed to recognize gestures and force levels synchronously. First, methods of gesture recognition with different force levels are investigated. Then, MTL framework is presented to improve the gesture recognition performance and give information about force levels. Last but not least, to solve the problem that using the greedy principle in MTL, a modified pseudo-task augmentation (PTA) trajectory is introduced. Experiments conducted on two representative datasets demonstrate that compared with other methods, frequency domain information with convolutional neural network (CNN) is more suitable for gesture recognition with variable force levels. Besides, the feasibility of extracting features that are closely related to both gestures and force levels is verified via MTL. By influencing learning dynamics, the proposed PTA method can improve the results of all tasks, and make it applicable to the case where the main tasks and auxiliary tasks are clear.
This paper discusses the problem of force estimation represented by surface electromyography (sEMG) signals collected from an armband-like collection device. The scheme is proposed for the sake of two dimensions of sEMG signals: spatial and temporal information. From the point of space, first, appropriate channel number across all subjects is investigated. During this progress, an electrode channel selection method based on Spearman’s rank order correlation coefficient is utilized to detect signals from active muscle. Then, to reduce the computation and highlight the channel information, linear regression (LR) algorithm is conducted to weight each channel. Besides, the recurrent neural network (RNN) is used to capture the temporal information and model the relation between sEMG and output force. Experiments conducted on four subjects demonstrate that six channels are enough to characterize the muscle activity. By combining the selected channels with different weight coefficients, LR algorithm can fit the output force better than simply averaging them. Furthermore, RNN with long short-term memory cell shows the superiority in time series modeling, which can improve our results to a greater degree. Experimental results prove the feasibility of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.