Atomic force microscopy (AFM) is a powerful tool for microbiological investigation. This versatile technique cannot only image cellular surfaces at high resolution, but also measure many forms of fundamental interactions over scales ranging from molecules to cells. In this work, we review the recent development of AFM applications in the microbial area. We discuss several approaches for using AFM scanning images to investigate morphological characteristics of microbes and the use of force-distance curves to investigate interaction of microbial samples at the nanometer and cellular levels. Complementary techniques used in combination with AFM for study of microbes are also discussed.
In this work, we demonstrate a form of minority carrier degradation on ntype Cz silicon that affects both the bulk and surface related lifetimes. We identify three key behaviors of the degradation mechanism; 1) a firing dependence of degradation extent, 2) the appearance of bulk degradation when wafers are fired in the presence of a diffused emitter and 3) a firing related apparent surface degradation when wafers are fired in the absence of an emitter. We further report a defect capture cross-section ratio of σn/σp = 0.028 ± 0.003 for the defect in n-type. Utilizing our understanding of LeTID in p-type silicon, we demonstrate that the degradation behaviors in both n-type and p-type silicon are closely correlated. In light of numerous reports on the involvement of hydrogen the potential role of a hydrogen-induced degradation mechanism is discussed in both p-and n-type silicon, particularly in relation to the diffusion of hydrogen and influence of hydrogen-dopant interactions.
A mathematical model was developed to describe the anaerobic ammonium oxidation (ANAMMOX) process in a granular upflow anaerobic sludge blanket (UASB) reactor. ANAMMOX granules were cultivated in the UASB reactor by seeding aerobic granules. The granule-based reactor had a great N-loading resistant capacity. The model simulation results on the 1-year reactor performance matched the experimental data well. The yield coefficient for the growth and the decay rate coefficient of the ANAMMOX granules were estimated to be 0.164 g COD g(-1) N and 0.00016 h(-1), respectively. With this model, the effects of process parameters on the reactor performance were evaluated. Results showed that the optimum granule diameter for the maximum N-removal should be between 1.0 and 1.3 mm and that the optimum N loading rate should be 0.8 kg N m(-3) d(-1). In addition, the substrate micro-profiles in the ANAMMOX granules were measured with a microelectrode to explore the diffusion dynamics within the granules, and the measured profiles matched the predicted results well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.