Bilateral filtering is a well-known tool to denoise or smooth one-dimensional (1D) signals, two-dimensional (2D) images, and three-dimensional (3D) models. The bilateral weights help preserve the edges or features more effectively than unilateral weights. However, it is immensely difficult to configure the scale parameters of the convolutional kernel functions. To overcome the difficulty, this paper proposes adaptive, feature-preserving bilateral filters for 3D models by introducing automatic, adaptive scale parameters. Firstly, the feature scale was defined on 3D models, bridging up the gap between feature scale and scale parameter of the Gaussian functions. Next, the scale descriptor was proposed to adaptively configure the scale parameter for each face of the target 3D model, changing the traditional approach of adopting the same scale parameter for all faces. On this basis, a feature-preserving local filter was designed by introducing the adaptive scale parameters to the iterative local scheme, and a modified global filter, which is robust to irregular sampling during denoising, was designed based on the adaptive scale parameters. The excellence of our filters was proved through experiments on multiple synthetic and real-world noisy models, in comparison to the state-of-the-art filters. The research results lay a solid basis for feature preservation and noise removal of 3D models.
Distinguishing among different kinds of features as well as noises on 3D mesh models is crucial for feature-preserving mesh denoising. This paper proposes to address this issue via in-depth analysis of the intermediate products of the denoising processes, and one framework is presented for raising adaptive and feature-preserving mesh denoising schemes. Firstly, by analyzing the changes of the facet normals during the denoising process, we propose the definition of developmental guidance, which helps to assess the current filtering status and predict the positions of feature and smooth regions. Then, by incorporating the guidance, we put forward one interpolation-based denoising scheme, which affords an efficient way to interpolate and recover different levels of features and is robust to severe noises. Besides, we also introduce the guidance to the optimization-based model, and the achieved global scheme is tested to be stable and robust to irregular samplings. Both the theoretical analysis and extensive experimental results on synthetic and real-world noises have demonstrated the attractive advantages of our whole framework, such as being adaptive, efficient, robust, feature-preserving, etc. INDEX TERMS bilateral filtering, feature-preserving, guided filter, linear interpolation, mesh denoising
岳少阳 1) , 李楠 楠 1) , 王为莹 1) , 王辉 2) , 包敏泽 1) , 蒋波 1)* 1) (大连海事大学信息科学技术学院 大连 116000) 2) (石家庄铁道大学信息科学技术学院 石家庄 050000)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.