Retinoblastoma is the most frequently occurring tumour in the eyes in early childhood. Novel targets that are important for the diagnosis or treatment of retinoblastoma could be valuable in increasing the survival rate of patients affected by this disease. Long non-coding RNAs (lncRNAs) are a recently discovered type of RNAs with no proteincoding function; yet it has become increasingly clear that lncRNAs are responsible for important gene regulatory functions in various diseases. In this study, the expression of lncRNA HOTAIR was measured by qRT-PCR, and HOTAIR expression was found to be significantly upregulated in human retinoblastomas tissues as compared with that in paracancerous tissues. Knockdown of HOTAIR restricted the proliferation and invasion of the more invasive retinoblastoma Y79 cells, and led to G0/G1 arrest, possibly through inhibiting phospho-RB1, RB1 and CCNE. Furthermore, we found that the Notch signalling pathway was activated abnormally in retinoblastoma cell lines, while knockdown of HOTAIR attenuated the endogenous Notch signalling pathway in vitro and in vivo. In addition, knockdown of HOTAIR could inhibit the tumour progression in a xenograft model of retinoblastoma. In summary, our findings indicate that HOTAIR may play important roles in retinoblastoma progression via Notch pathway. HOTAIR has the potential to enhance the development of novel targeted diagnostic and therapeutic approaches for retinoblastoma.
Departmental sources Background: The phytochemical ingredients of berries have been used in the treatment of various bodily ailments; while their roles in preventing the severity of glaucoma are poorly understood. Hence, the present study was framed to investigate whether ethanolic extracts of Lycium barbarum exerts protection against the onset of glaucoma using cultured PC12 neuronal cells by modulating the expression of extracellular matrix proteins. Material/Methods: In order to develop glaucoma like condition in cells, cultured PC12 cells were subjected to 50 and 100 mmHg hydrostatic pressure for 24 hours. The pressure exposed cells were analyzed for the expression of glaucoma markers such as ANGPTL7 and the expressions of extracellular matrix proteins in the presence and absence of L. barbarum, matrix metalloproteinase (MMP)-9 inhibitor, and latanoprost, a current drug for the treatment of glaucoma. Results: PC12 cells exposed to hydrostatic pressures (50 and 100 mmHg) increased the expression of glaucoma marker, ANGPTL7. Moreover, results have demonstrated the significant changes in the expression of MMP-2, MMP-9, collagen I, and TGF-b at the gene level. In contrast, cells pretreated with L. barbarum extracts showed reduced expression of ANGPTL7 and extracellular matrix proteins compared to control. Furthermore, to elucidate the role of MMP-9 in the onset of glaucoma, cells were silenced using MMP-9 inhibitor along with L. barbarum demonstrated a significant reduction in the glaucoma marker ANGPTL7 while improving the expression of caveolin-1 expression in cells subjected to pressure. Conclusions: The extract of L. barbarum protects the cells from intraocular pressure by activating caveolin-1 dependent pathway via inhibition of MMP-9 expression.
AIM: To explore the regulatory mechanism of nuclear paraspeckle assembly transcript 1 (NEAT1) in the pathogenesis of posterior capsule opacification (PCO). METHODS: Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was executed to analyze NEAT1 and microRNA (miR)-26a-5p expression in transforming growth factor-beta 2 (TGF-β2)-disposed lens epithelial cells (LECs). The proliferation, cell cycle progression, apoptosis, and migration of TGF-β2-disposed LECs were evaluated. The relationship between NEAT1 or fanconi anemia (FA) complementation group E (FANCE) and miR-26a-5p was verified by dual-luciferase reporter assay. RESULTS: TGF-β2 induced NEAT1 expression in LECs. NEAT1 inhibition accelerated apoptosis, cell cycle arrest, decreased proliferation, epithelial-mesenchymal transition (EMT), and migration of TGF-β2-disposed LECs. NEAT1 sponged miR-26a-5p to further regulate FANCE expression. Rescue experiments presented that miR-26a-5p downregulation overturned NEAT1 silencing-mediated impacts on TGF-β2-disposed LEC biological behaviors. Additionally, FANCE overexpression reversed miR-26a-5p mimic-mediated impacts on TGF-β2-disposed LEC biological behaviors. CONCLUSION: TGF-β2-induced NEAT1 facilitates LEC proliferation, migration, and EMT by upregulating FANCE via sequestering miR-26a-5p.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.