Using bifurcation method and numerical simulation approach of dynamical systems, we study a two-component Fornberg-Whitham equation. Two types of bounded traveling wave solutions are found, that is, the kink-like wave and compacton-like wave solutions. The planar graphs of these solutions are simulated by using software Mathematica; meanwhile, two new phenomena are revealed; that is, the periodic wave solution can become the kink-like wave or compacton-like wave solution under some conditions, respectively. Exact implicit or parameter expressions of these solutions are given.
Using the bifurcation method of dynamical systems, we investigate the nonlinear waves and their limit properties for the generalized KdV-mKdV-like equation. We obtain the following results: (i) three types of new explicit expressions of nonlinear waves are obtained. (ii) Under different parameter conditions, we point out these expressions represent different waves, such as the solitary waves, the 1-blow-up waves, and the 2-blow-up waves. (iii) We revealed a kind of new interesting bifurcation phenomenon. The phenomenon is that the 1-blow-up waves can be bifurcated from 2-blow-up waves. Also, we gain other interesting bifurcation phenomena. We also show that our expressions include existing results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.