Novel dual emission, pH-sensitive variants of the green fluorescent protein (GFP) have been constructed and are suitable for ratiometric emission measurements in vivo. This new class of GFPs, termed deGPFs, results from substitution of wild-type residue 65 with threonine and residues 148 and/or 203 with cysteine. deGFPs display pK(a) values ranging from 6.8 to 8.0 and emission that switches from a green form (lambda(max) approximately 515 nm) to a blue form (lambda(max) approximately 460 nm) with acidifying pH. In this report we analyze in most detail the deGFP1 variant (S65T/H148G/T203C, pK(a) approximately 8.0) and the deGFP4 variant (S65T/C48S/H148C/T203C, pK(a) approximately 7.3). In the following paper [McAnaney, T. B., Park, E. S., Hanson, G. T., Remington, S. J., and Boxer, S. G. (2002) Biochemistry 41, 15489-15494], data obtained by ultrafast fluorescence upconversion spectroscopy can be described by a kinetic model that includes an excited-state proton-transfer pathway at high pH but not at low pH. Crystal structure analyses of deGFP1 at high-pH and low-pH conformations were performed to elucidate the basis for the dual emission characteristics. At low pH the structure does not contain a hydrogen bond network that would support rapid transfer of a proton from the excited state of the neutral chromophore to a suitable acceptor; hence blue emission is observed. At high pH, backbone rearrangements induced by changes in the associated hydrogen bond network permit excited-state proton transfer from the excited state of the neutral chromophore to the bulk solvent via Ser147 and bound water molecules, resulting in green emission from the anionic chromophore. Comparative analysis suggests that the basis for dual emission is elimination of the wild-type proton-transfer network by the S65T substitution, a general reduction in hydrogen-bonding opportunities, and a concomitant increase in the hydrophobic nature of the chromophore environment resulting from the cysteine substitutions. We evaluated the suitability of the deGFP4 variant for intracellular pH measurements in mammalian cells by transient expression in PS120 fibroblasts. The responses of deGFP4 and a commercially available pH-sensitive dye, SNARF-1, to changes in pH were compared in the same cells. Results show that the dynamic range of the emission ratio change is comparable between the two pH sensors over the range examined. Two-photon excitation was found to elicit a better deGFP4 fluorescent signal above cellular autofluorescence when compared to conventional confocal microscopy. Given their favorable optical characteristics, suitable pK(a)'s for the physiological pH range, and suitability for ratiometric measurements, dual emission GFPs should make excellent probes for studying pH in vivo.
Physicochemical properties of the cationic liposomes, including structure of the cationic lipid-to-DNA ratio, liposome particle size, and inclusion of the helper lipids, were studied for their effect on the level, site, and duration time of gene expression in vivo by intravenous administration. Using a cytomegalovirus (CMV)-driven gene expression system containing either the luciferase or green fluorescence protein gene as a reporter and two cationic lipids [N-(2,3-dioleoyloxy)propyl-N,N,N-trimethylammonium chloride (DOTMA) and 1,2-dioleoyloxy-3-trimethylammonium propane (DOTAP)], we demonstrated in vivo by a single intravenous injection of DNA/liposome complexes into mice, that cationic liposomes are capable of transfecting cells in organs such as the lung, heart, liver, spleen, and kidney. Transfection efficiency is determined mainly by the structure of the cationic lipid and the ratio of cationic lipid to DNA. Although the presence of cholesterol in DOTAP liposomes did not affect transfection activity, inclusion of dioleoylphosphatidylethanolamine (DOPE) into either DOTAP or DOTMA liposomes significantly decreases liposome transfection activity in vivo. Results form time course show that gene expression in different organs is transient, with a peak level between 4 and 24 hr, dropping to less than 1% of the peak level by day 4. Experiments with repeated injections showed that the peak level of gene expression could be regained by subsequent injection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.